Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into our sight: A new view on the evolution of the eye lens

23.09.2005


The evolution of complex and physiologically remarkable structures such as the vertebrate eye has long been a focus of intrigue and theorizing by biologists. In work reported this week in Current Biology, the evolutionary history of a critical eye protein has revealed a previously unrecognized relationship between certain components of vertebrate eyes and those of the more primitive light-sensing systems of invertebrates. The findings help clarify our conceptual framework for understanding how the vertebrate eye, as we know it, has emerged over evolutionary time.



The work is reported by Sebastian Shimeld at the University of Oxford and colleagues at the University of London and Radboud University in The Netherlands.

Our sight relies on the ability of our eye to form a clear, focused image on the retina. The critical component in focusing is the eye lens, and the physical properties that underlie the transparency of the lens, as well as its ability to precisely refract light, arise from the high concentrations of special proteins called crystallins found in lens cells.


Fish, frogs, birds and mammals all experience image-forming vision, thanks to the fact that their eyes all express crystallins and form a lens; however, the vertebrates’ nearest invertebrate relatives, such as sea squirts, have only simple eyes that detect light but are incapable of forming an image. This has lead to the view that the lens evolved within the vertebrates early in vertebrate evolution, and it raises a long-standing question in evolutionary biology: How could a complex organ with such special physical properties have evolved?

In their new work, Shimeld and colleagues approached this question by examining the evolutionary origin of one crystallin protein family, known as the ß?-crystallins. Focusing on sea squirts, invertebrate cousins of the vertebrate lineage, the researchers found that these creatures possess a single crystallin gene, which is expressed in its primitive light-sensing system. The identification of the sea squirt’s crystallin strongly suggests that it is the single gene from which the vertebrate ß?-crystallins evolved.

The researchers also found that, remarkably, expression of the sea squirt crystallin gene is controlled by genetic elements that also respond to the factors that control lens development in vertebrates: The researchers showed that when regulatory regions of the sea squirt gene are transferred to frog embryos, these regulatory elements drive gene expression in the tadpoles’ own visual system, including the lens. This strongly suggests that prior to the evolution of the lens, there was a regulatory link between two tiers of genes: those that would later become responsible for controlling lens development, and those that would help give the lens its special physical properties. This combination of genes appears to have then been co-opted in an early vertebrate during the evolution of its visual system, giving rise to the lens.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht The interactome of infected neural cells reveals new therapeutic targets for Zika
23.01.2017 | D'Or Institute for Research and Education

nachricht Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery
20.01.2017 | GSI Helmholtzzentrum für Schwerionenforschung GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

The interactome of infected neural cells reveals new therapeutic targets for Zika

23.01.2017 | Life Sciences

Melting solid below the freezing point

23.01.2017 | Materials Sciences

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>