Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Insight into our sight: A new view on the evolution of the eye lens

23.09.2005


The evolution of complex and physiologically remarkable structures such as the vertebrate eye has long been a focus of intrigue and theorizing by biologists. In work reported this week in Current Biology, the evolutionary history of a critical eye protein has revealed a previously unrecognized relationship between certain components of vertebrate eyes and those of the more primitive light-sensing systems of invertebrates. The findings help clarify our conceptual framework for understanding how the vertebrate eye, as we know it, has emerged over evolutionary time.



The work is reported by Sebastian Shimeld at the University of Oxford and colleagues at the University of London and Radboud University in The Netherlands.

Our sight relies on the ability of our eye to form a clear, focused image on the retina. The critical component in focusing is the eye lens, and the physical properties that underlie the transparency of the lens, as well as its ability to precisely refract light, arise from the high concentrations of special proteins called crystallins found in lens cells.


Fish, frogs, birds and mammals all experience image-forming vision, thanks to the fact that their eyes all express crystallins and form a lens; however, the vertebrates’ nearest invertebrate relatives, such as sea squirts, have only simple eyes that detect light but are incapable of forming an image. This has lead to the view that the lens evolved within the vertebrates early in vertebrate evolution, and it raises a long-standing question in evolutionary biology: How could a complex organ with such special physical properties have evolved?

In their new work, Shimeld and colleagues approached this question by examining the evolutionary origin of one crystallin protein family, known as the ß?-crystallins. Focusing on sea squirts, invertebrate cousins of the vertebrate lineage, the researchers found that these creatures possess a single crystallin gene, which is expressed in its primitive light-sensing system. The identification of the sea squirt’s crystallin strongly suggests that it is the single gene from which the vertebrate ß?-crystallins evolved.

The researchers also found that, remarkably, expression of the sea squirt crystallin gene is controlled by genetic elements that also respond to the factors that control lens development in vertebrates: The researchers showed that when regulatory regions of the sea squirt gene are transferred to frog embryos, these regulatory elements drive gene expression in the tadpoles’ own visual system, including the lens. This strongly suggests that prior to the evolution of the lens, there was a regulatory link between two tiers of genes: those that would later become responsible for controlling lens development, and those that would help give the lens its special physical properties. This combination of genes appears to have then been co-opted in an early vertebrate during the evolution of its visual system, giving rise to the lens.

Heidi Hardman | EurekAlert!
Further information:
http://www.cell.com
http://www.current-biology.com

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>