Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water channel protein implicated in relative of multiple sclerosis

22.09.2005


Researchers have identified a molecular suspect in a disorder similar to multiple sclerosis (MS) that attacks the optic nerve and spinal cord, according to a report presented at the 130th annual meeting of the American Neurological Association in San Diego. The protein, called aquaporin-4, is a channel protein that allows water to move in and out of cells.

"Aquaporin-4 is the first specific molecule to be defined as a target for the autoimmune response in any form of MS," said author Vanda A. Lennon, MD, PhD, of the Mayo Clinic in Rochester, Minnesota. "It is also the first example of a water channel being the target of any autoimmune disorder."

Because there are many other variants of aquaporins throughout the body, Lennon suggests that these proteins might play a role in poorly understood autoimmune disorders in other organ systems.



For some time, scientists have understood that multiple sclerosis is not so much a single disease, but a category of disorders with similar damage to different parts of the nervous system. Recently, progress has been made in teasing out a particular syndrome called neuromyelitis optica (NMO), in which the body mistakenly mounts an immune attack against the optic nerve and spinal cord.

Last year, Lennon and her colleagues at Mayo, along with collaborators in Japan, were able to detect a particular antibody that occurrs in most people with NMO, but not in patients with "classical" MS.

This is particularly important for clinicians because specific treatment recommendations to help prevent blindness and other later symptoms, including paralysis, differ for NMO and MS .

In the present study, Lennon and colleagues have identified an aquaporin as the target molecule of the NMO antibody. "This finding is a departure from mainstream thinking about MS and related disorders, where the major focus of research in the past century has been the myelin that insulates nerve fibers, and the cell that manufactures myelin, known as the oligodendrocyte," said Lennon.

The Mayo Clinic group’s work reveals that the protein targeted by the NMO antibody is not a component of myelin, or of oligodendrocytes. Aquaporin-4, which is the most abundant water channel in the brain, is instead located in a different type of cell called astrocytes. "Aquaporin-4 is concentrated in membranes in the precise site where spinal cord inflammation is found in NMO patients," said Lennon.

The next step in this research is to use this knowledge to create an animal model that can be used to confirm the relationhip between aquaporin-4 and NMO, as well as to develop new and improved therapies.

Crystal Weinberger | EurekAlert!
Further information:
http://www.aneuroa.org

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>