Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crystal structure of Alzheimer’s drug predicted

22.09.2005


Issued by EPSRC on behalf of the UK e-Science Programme
Highlight from forthcoming e-Science All Hands meeting 2005

A challenge, presented at last year’s e-Science All Hands meeting, has resulted in an e-Science project achieving one of the holy grails of the pharmaceutical industry – the computational prediction of a previously unidentified crystal structure, or polymorph, of a drug molecule.


Researchers working on the e-materials project picked up the gauntlet and successfully predicted a new polymorph of the Alzheimer’s drug, piracetam. The work of the e-materials project will be presented at this year’s e-Science All Hands meeting which is being held in Nottingham from 20-22 September 2005.

The action of a drug is dependent not only on its chemical composition, but also on the way in which the drug molecules arrange themselves. For example, crystal structure can affect the drug’s solubility and hence its rate of absorption into the bloodstream. An unexpected polymorph could alter the drug’s therapeutic properties if it inadvertently contaminated the standard formulation.

Polymorphs are the bane of the pharmaceutical industry because they can be difficult to predict. Industrial chemists put a lot of effort into searching for new polymorphs using experimental techniques, but they can never be sure they have found them all. A new polymorph can turn up years later, sometimes resulting in the withdrawal of a drug from the market whilst the problem is identified and solved. Pharmaceutical companies are also keen to patent every polymorph of a drug to prevent a rival from undercutting them later with a new, therapeutically effective version.

The e-materials project, funded by the Engineering and Physical Sciences Research Council (EPSRC) as part of the e-Science Core Programme, is applying Grid technologies to address this problem. "We chose to study piracetam because it’s a well understood drug with three known polymorphs. We thought it was a good one to test our new methods against," says Professor Sally Price from University College, London (UCL).

After presenting her work at last year’s e-Science All Hands meeting, Professor Price was presented with a challenge. Dr Colin Pulham from the University of Edinburgh asked her to predict the crystal structure of a new polymorph of piracetam that he had discovered using high pressure crystallisation techniques. "I told Professor Price that we had discovered a new form, but I didn’t tell her what is was. If her techniques were effective, she should be able to find it," he says.

Predicting polymorphism in molecular structures is computationally very demanding. Millions of possible structures need to be analysed to identify those that are likely to be the most stable. Professor Price conducted the piracetam analysis on a campus grid at UCL. The e-materials project is building up a database containing the outputs of polymorphism searches and analysis at the Central Laboratory for the Research Councils (CCLRC). The database and a dataportal will shortly be available on the National Grid Service, providing information on an increasing range of molecules that may help identify other new polymorphs.

A few months after her challenge, Professor Price submitted a list of candidate structures in order of probability. The first on the list matched the structure that Dr Pulham and his team had found experimentally. "It was bang, spot on," he says. "This result does a lot for the credibility of our methodology," adds Professor Price.

The two continue to collaborate over other molecular polymorphisms, with Professor Price’s predictions of new polymorphs guiding Dr Pulham’s experiments, as well as vice versa. The next challenge is to develop the new e-Science techniques further to find polymorphism in increasingly complex molecules.

Judy Redfearn | EurekAlert!
Further information:
http://www.epsrc.ac.uk
http://www.allhands.org.uk/

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>