Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crystal structure of Alzheimer’s drug predicted

22.09.2005


Issued by EPSRC on behalf of the UK e-Science Programme
Highlight from forthcoming e-Science All Hands meeting 2005

A challenge, presented at last year’s e-Science All Hands meeting, has resulted in an e-Science project achieving one of the holy grails of the pharmaceutical industry – the computational prediction of a previously unidentified crystal structure, or polymorph, of a drug molecule.


Researchers working on the e-materials project picked up the gauntlet and successfully predicted a new polymorph of the Alzheimer’s drug, piracetam. The work of the e-materials project will be presented at this year’s e-Science All Hands meeting which is being held in Nottingham from 20-22 September 2005.

The action of a drug is dependent not only on its chemical composition, but also on the way in which the drug molecules arrange themselves. For example, crystal structure can affect the drug’s solubility and hence its rate of absorption into the bloodstream. An unexpected polymorph could alter the drug’s therapeutic properties if it inadvertently contaminated the standard formulation.

Polymorphs are the bane of the pharmaceutical industry because they can be difficult to predict. Industrial chemists put a lot of effort into searching for new polymorphs using experimental techniques, but they can never be sure they have found them all. A new polymorph can turn up years later, sometimes resulting in the withdrawal of a drug from the market whilst the problem is identified and solved. Pharmaceutical companies are also keen to patent every polymorph of a drug to prevent a rival from undercutting them later with a new, therapeutically effective version.

The e-materials project, funded by the Engineering and Physical Sciences Research Council (EPSRC) as part of the e-Science Core Programme, is applying Grid technologies to address this problem. "We chose to study piracetam because it’s a well understood drug with three known polymorphs. We thought it was a good one to test our new methods against," says Professor Sally Price from University College, London (UCL).

After presenting her work at last year’s e-Science All Hands meeting, Professor Price was presented with a challenge. Dr Colin Pulham from the University of Edinburgh asked her to predict the crystal structure of a new polymorph of piracetam that he had discovered using high pressure crystallisation techniques. "I told Professor Price that we had discovered a new form, but I didn’t tell her what is was. If her techniques were effective, she should be able to find it," he says.

Predicting polymorphism in molecular structures is computationally very demanding. Millions of possible structures need to be analysed to identify those that are likely to be the most stable. Professor Price conducted the piracetam analysis on a campus grid at UCL. The e-materials project is building up a database containing the outputs of polymorphism searches and analysis at the Central Laboratory for the Research Councils (CCLRC). The database and a dataportal will shortly be available on the National Grid Service, providing information on an increasing range of molecules that may help identify other new polymorphs.

A few months after her challenge, Professor Price submitted a list of candidate structures in order of probability. The first on the list matched the structure that Dr Pulham and his team had found experimentally. "It was bang, spot on," he says. "This result does a lot for the credibility of our methodology," adds Professor Price.

The two continue to collaborate over other molecular polymorphisms, with Professor Price’s predictions of new polymorphs guiding Dr Pulham’s experiments, as well as vice versa. The next challenge is to develop the new e-Science techniques further to find polymorphism in increasingly complex molecules.

Judy Redfearn | EurekAlert!
Further information:
http://www.epsrc.ac.uk
http://www.allhands.org.uk/

More articles from Life Sciences:

nachricht Zap! Graphene is bad news for bacteria
23.05.2017 | Rice University

nachricht Discovery of an alga's 'dictionary of genes' could lead to advances in biofuels, medicine
23.05.2017 | University of California - Los Angeles

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Scientists propose synestia, a new type of planetary object

23.05.2017 | Physics and Astronomy

Zap! Graphene is bad news for bacteria

23.05.2017 | Life Sciences

Medical gamma-ray camera is now palm-sized

23.05.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>