Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New crystal structure of Alzheimer’s drug predicted

22.09.2005


Issued by EPSRC on behalf of the UK e-Science Programme
Highlight from forthcoming e-Science All Hands meeting 2005

A challenge, presented at last year’s e-Science All Hands meeting, has resulted in an e-Science project achieving one of the holy grails of the pharmaceutical industry – the computational prediction of a previously unidentified crystal structure, or polymorph, of a drug molecule.


Researchers working on the e-materials project picked up the gauntlet and successfully predicted a new polymorph of the Alzheimer’s drug, piracetam. The work of the e-materials project will be presented at this year’s e-Science All Hands meeting which is being held in Nottingham from 20-22 September 2005.

The action of a drug is dependent not only on its chemical composition, but also on the way in which the drug molecules arrange themselves. For example, crystal structure can affect the drug’s solubility and hence its rate of absorption into the bloodstream. An unexpected polymorph could alter the drug’s therapeutic properties if it inadvertently contaminated the standard formulation.

Polymorphs are the bane of the pharmaceutical industry because they can be difficult to predict. Industrial chemists put a lot of effort into searching for new polymorphs using experimental techniques, but they can never be sure they have found them all. A new polymorph can turn up years later, sometimes resulting in the withdrawal of a drug from the market whilst the problem is identified and solved. Pharmaceutical companies are also keen to patent every polymorph of a drug to prevent a rival from undercutting them later with a new, therapeutically effective version.

The e-materials project, funded by the Engineering and Physical Sciences Research Council (EPSRC) as part of the e-Science Core Programme, is applying Grid technologies to address this problem. "We chose to study piracetam because it’s a well understood drug with three known polymorphs. We thought it was a good one to test our new methods against," says Professor Sally Price from University College, London (UCL).

After presenting her work at last year’s e-Science All Hands meeting, Professor Price was presented with a challenge. Dr Colin Pulham from the University of Edinburgh asked her to predict the crystal structure of a new polymorph of piracetam that he had discovered using high pressure crystallisation techniques. "I told Professor Price that we had discovered a new form, but I didn’t tell her what is was. If her techniques were effective, she should be able to find it," he says.

Predicting polymorphism in molecular structures is computationally very demanding. Millions of possible structures need to be analysed to identify those that are likely to be the most stable. Professor Price conducted the piracetam analysis on a campus grid at UCL. The e-materials project is building up a database containing the outputs of polymorphism searches and analysis at the Central Laboratory for the Research Councils (CCLRC). The database and a dataportal will shortly be available on the National Grid Service, providing information on an increasing range of molecules that may help identify other new polymorphs.

A few months after her challenge, Professor Price submitted a list of candidate structures in order of probability. The first on the list matched the structure that Dr Pulham and his team had found experimentally. "It was bang, spot on," he says. "This result does a lot for the credibility of our methodology," adds Professor Price.

The two continue to collaborate over other molecular polymorphisms, with Professor Price’s predictions of new polymorphs guiding Dr Pulham’s experiments, as well as vice versa. The next challenge is to develop the new e-Science techniques further to find polymorphism in increasingly complex molecules.

Judy Redfearn | EurekAlert!
Further information:
http://www.epsrc.ac.uk
http://www.allhands.org.uk/

More articles from Life Sciences:

nachricht 'Lipid asymmetry' plays key role in activating immune cells
20.02.2018 | Biophysical Society

nachricht New printing technique uses cells and molecules to recreate biological structures
20.02.2018 | Queen Mary University of London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>