Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UQ researcher tracking key to healing the brain

22.09.2005


Stem cells have long been described as the holy grail of bioscientists.



These amazing cells have the remarkable potential to develop into many different cell types in the body and have to potential to revolutionise medical science.

Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish cells lost due to everyday wear and tear, or following injury or disease.


Dr Rod Rietze, head of the Queensland Brain Institute’s (QBI) Laboratory for Neural Stem Cell Biology, is hoping those stem cells may soon unlock the secrets to healing the brain as well.

First he has to find out what they actually do – something that has been notoriously hard to do in the past. Dr Rietze is a finalist in the UQ Foundation Research Excellence Awards, to be announced tomorrow as a highlight of UQ Research Week 2005. He is working on a project with a novel approach to track neural stem cells in vivo.

"Identifying neural stem cells is like finding a needle in a haystack," Dr Rietze said.

"The tried and true method is to look for particular markers on the outside of the cell, but this is a long and laborious process.

"What we are doing is looking at a distinguishing attribute of stem cells, which is that they are relatively quiescent, or don’t divide much in relation to other cells.

"This will enable us to determine, for the first time, the precise location and prevalence of neural stem cells in situ, which in turn will allow us to determine more rapidly and accurately the role played by stem cells in the mammalian brain and spinal cord under normal conditions and following injuries."

He said at the moment, scientists rely on tissue culture methods to guess what is happening inside the body, but this new approach will mean they will be able to track the cells while they are working in the body, a major leap forward.

"Defining the role and regulation of neural stem cells in the adult brain will undoubtedly revolutionise our understanding of how the brain responds to its environment," Dr Rietze said.

"This will allow us to ultimately harness its regenerative capacity to bring about new and effective treatments for conditions caused by trauma, disease, or even normal ageing."

Dr Rietze’s interest in neural stem cells began while he was studying zoology at the University of Calgary in Canada, and it was there he "got fascinated with the complexity and elegance of the brain".

He continued in Calgary completing a Masters degree in the lab which first reported the existence of adult neural stem cells, then worked for two years at NeuroSpheres Ltd, a biotech company focused on using stem cells to repair the brain, before coming to Australia to do his PhD under Professor Perry Bartlett at the Walter and Eliza Hall Institute in Melbourne.

Dr Rietze followed Professor Bartlett to UQ when the QBI was established in 2003, where an innovative scientific environment has since been created thanks to having a high concentration of experts who specialise in different aspects of neuroscience research.

"It is great to have so many people working on different aspects of the same problem, creating a unique synergy that is already producing results," he said.

Dr Rod Rietze | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>