Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UQ researcher tracking key to healing the brain

22.09.2005


Stem cells have long been described as the holy grail of bioscientists.



These amazing cells have the remarkable potential to develop into many different cell types in the body and have to potential to revolutionise medical science.

Serving as a sort of repair system for the body, they can theoretically divide without limit to replenish cells lost due to everyday wear and tear, or following injury or disease.


Dr Rod Rietze, head of the Queensland Brain Institute’s (QBI) Laboratory for Neural Stem Cell Biology, is hoping those stem cells may soon unlock the secrets to healing the brain as well.

First he has to find out what they actually do – something that has been notoriously hard to do in the past. Dr Rietze is a finalist in the UQ Foundation Research Excellence Awards, to be announced tomorrow as a highlight of UQ Research Week 2005. He is working on a project with a novel approach to track neural stem cells in vivo.

"Identifying neural stem cells is like finding a needle in a haystack," Dr Rietze said.

"The tried and true method is to look for particular markers on the outside of the cell, but this is a long and laborious process.

"What we are doing is looking at a distinguishing attribute of stem cells, which is that they are relatively quiescent, or don’t divide much in relation to other cells.

"This will enable us to determine, for the first time, the precise location and prevalence of neural stem cells in situ, which in turn will allow us to determine more rapidly and accurately the role played by stem cells in the mammalian brain and spinal cord under normal conditions and following injuries."

He said at the moment, scientists rely on tissue culture methods to guess what is happening inside the body, but this new approach will mean they will be able to track the cells while they are working in the body, a major leap forward.

"Defining the role and regulation of neural stem cells in the adult brain will undoubtedly revolutionise our understanding of how the brain responds to its environment," Dr Rietze said.

"This will allow us to ultimately harness its regenerative capacity to bring about new and effective treatments for conditions caused by trauma, disease, or even normal ageing."

Dr Rietze’s interest in neural stem cells began while he was studying zoology at the University of Calgary in Canada, and it was there he "got fascinated with the complexity and elegance of the brain".

He continued in Calgary completing a Masters degree in the lab which first reported the existence of adult neural stem cells, then worked for two years at NeuroSpheres Ltd, a biotech company focused on using stem cells to repair the brain, before coming to Australia to do his PhD under Professor Perry Bartlett at the Walter and Eliza Hall Institute in Melbourne.

Dr Rietze followed Professor Bartlett to UQ when the QBI was established in 2003, where an innovative scientific environment has since been created thanks to having a high concentration of experts who specialise in different aspects of neuroscience research.

"It is great to have so many people working on different aspects of the same problem, creating a unique synergy that is already producing results," he said.

Dr Rod Rietze | EurekAlert!
Further information:
http://www.researchaustralia.com.au/

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>