Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Suppression of FOXO1a gene might kill resistant ARMS tumors

22.09.2005


FOXO1a caused death of tumor cells in laboratory study by triggering expression of caspase-3, which blocks cell division and causes cells to undergo apoptosis, according to St. Jude.



The loss of function of a gene called FOXO1a plays an important role in the development of the most common cancer of soft tissues in children, and restoring the function of that gene in cancer cells suppresses that cancer, according to investigators at St. Jude Children’s Research Hospital. The cancer, called alveolar rhabdomyosarcoma (ARMS), arises from immature skeletal muscle cells that remain partially differentiated (do not acquire all the characteristics of a mature muscle cell).

The St. Jude team found that the expression of FOXO1a is suppressed in ARMS and that the gene potently suppresses tumor activity when re-introduced into ARMS tumor cells in the laboratory. Therefore, the investigators theorize that the observed loss of FOXO1a activity is a pivotal step in the ARMS development. The FOXO1a gene produces the protein FOXO1a. Gene expression refers to the production of the protein coded for by a particular gene. A report on these findings appears in the September 12 issue of Journal of Cell Biology.


FOXO1a kills ARMS cells by activating the gene that produces a protein called caspase-3. Caspase-3 is a key player in the signaling pathway that triggers programmed cell death (apoptosis). Although caspase-3 triggers apoptosis in abnormal cells, normal myoblasts (immature muscle cells) also depend on caspase-3 activity in order to differentiate into mature muscle cells.

"Our study shows that suppression of FOXO1a is necessary for ARMS cells to survive and avoid caspase-3-mediated apoptosis, even in the more aggressive secondary tumors that are highly resistant to irradiation and chemotherapy, said Gerard Grosveld, Ph.D., chair of genetics and tumor cell biology at St. Jude. Grosveld is senior author of the paper. His team previously reported that FOXO1a (also called FKHR) is the master regulator that controls the differentiation of myoblasts into muscle cells (EMBO Journal 22:1147-1157; 2003).

The investigators also showed that the loss of FOXO1a expression works in combination with another mutation in ARMS. Specifically, muscle cells first acquire a mutation called a chromosomal translocation. Translocation occurs when two chromosomes break and exchange the pieces of DNA that break off. Because the chromosome breaks occur within genes, a piece of a gene from one chromosome is able to combine with the remaining piece of gene on the other chromosome. When two broken normal genes combine, the outcome is an abnormal gene called a fusion gene. In ARMS, the two possible fusion genes that arise by translocation are called PAX3-FOXO1a and PAX7-FOXO1a. Translocation destroys one of the two copies of FOXO1a, Grosveld noted.

If the remaining FOXO1a gene then fails to produce FOXO1a protein, the combination of the absence of FOXO1a with the gene translocation causes ARMS.

The finding suggests that drugs aimed at restoring or increasing the activity of FOXO1a in ARMS might successfully treat this cancer in children by forcing the abnormal cells to undergo apoptosis. Furthermore, the mutations that cause ARMS do not occur in the related but different muscle cancer ERMS (embryonal rhabdomyosarcoma), the researchers reported. Therefore, forcing the expression of FOXO1a in these cancer cells does not cause them to undergo apoptosis.

The proteins made by the PAX3 and PAX7 genes play critical roles in the development and differentiation of muscle cells, and the translocations disrupt their important functions, according to Grosveld. "So it’s not surprising that ARMS cells look like skeletal muscle cells that only partially differentiated," Grosveld said. "And in the absence of FOXO1a protein, these abnormal cells simply continue to grow and multiply and cause ARMS."

"Our findings emphasize that ARMS and ERMS are different forms of rhabdomyosarcoma that arise by independent mutations," said Philppe R. J. Bois, Ph.D., the postdoctoral fellow who did most of this work. "Therefore, different strategies will be required to improve treatment outcomes for each of these tumors." Bois is first author of the paper.

Other authors of this paper include Kamel Izeradjene, Peter J. Houghton, John L. Cleveland and Janet A. Houghton.

Kelly Perry | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>