Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Sugar helps control cell division

22.09.2005


Johns Hopkins scientists have discovered that a deceptively simple sugar is in fact a critical regulator of cells’ natural life cycle.



The discovery reveals that, when disturbed, this process could contribute to cancer or other diseases by failing to properly control the steps and timing of cell division, the researchers say. The findings are described in the Sept. 23 issue of the Journal of Biological Chemistry, available online now.

The sugar, known as O-GlcNAc (pronounced oh-GLUCK-nack), is used inside cells to modify proteins, turning the proteins off or on, helping or preventing their interactions with other proteins, keeping them from destruction or allowing their destruction. The comings and goings of the sugar on proteins seem to be important controllers of cell division, say the researchers.


"The dogma for decades has been that the cycle of cell division is controlled by the appearance and disappearance of certain proteins called cyclins, but experiments have shown that you can knock out any of these and still get perfectly normal cell division," says the study’s first author, Chad Slawson, Ph.D., a postdoctoral fellow in biological chemistry in Johns Hopkins’ Institute for Basic Biomedical Sciences. "In contrast, our experiments show that by increasing or decreasing the amount of sugar attached to proteins, the cell cycle is disrupted and isn’t salvageable unless O-GlcNAc levels are fixed."

In experiments with human cells and mouse cells, Slawson and his colleagues showed that preventing a cell from removing the sugar from proteins causes the cell to copy its genetic material and make new nuclei, but to fail to divide in two. The end result is cells with more than one nucleus -- a situation fairly common in cancer cells.

"Cells with more than one nucleus can survive, but they are dysregulated -- things just don’t go right," says Slawson. "The longer they survive, the worse it gets."

On the other hand, cells that had higher than normal amounts of the enzyme that removes the sugar from proteins ended up with nuclei that didn’t look right under a powerful microscope. Instead of being disseminated fairly uniformly through the entire nucleus, the genetic material of these cells was bunched up, giving the contents of the nucleus a "wrinkly" appearance.

Exactly what is going wrong is still unclear, adds Gerald Hart, Ph.D., professor and director of biological chemistry. He’s been studying O-GlcNAc since his lab discovered it attached to proteins inside cells 20 years ago. They now know which enzymes put the sugar onto proteins and which enzymes take it off -- and knocking out or blocking these enzymes allowed the researchers to control whether proteins were sugar-laden or sugar-free.

"Normally, the enzyme that adds the sugar to proteins is enriched at the hub of activity during cell division," notes Slawson. "When we knock it out or block it with a chemical, the cell cycle lengthens and cell division doesn’t happen properly. Clearly the enzyme is there for a reason."

But understanding what the sugar itself is doing and how its presence on or absence from proteins affects the cell depends solely on what protein it’s being attached to or removed from.

"Whether it’s turning something on or off depends on the protein to which the sugar is attached," says Hart. "It’s harder than having discovered an enzyme that does just one thing. To figure out the sugar’s effect, we have to look at what it’s modifying, and the extent and the location of the modification."

The sugar seems to modify as many proteins as the ubiquitous phosphate groups widely recognized as protein controllers, and it frequently seems to compete with phosphate groups for the same spots on proteins. Hart suggests that a particular balance between O-GlcNAc and phosphates on proteins may help fine-tune their activities.

The researchers’ next steps are to examine select proteins modified by O-GlcNAc and found at locations important for various steps in cell division to figure out why an imbalance of O-GlcNAc on the cells’ proteins has such a dramatic effect on the process.

The researchers were funded by the National Institute of Child Health and Human Development, the National Institute of Diabetes and Digestive and Kidney Diseases and the National Cancer Institute.

Authors on the paper are Slawson, Natasha Zachara, Keith Vosseller, Win Den Cheung, Daniel Lane and Gerald Hart, all at Johns Hopkins while working on this project. Vosseller is now at Drexel University.

O-GlcNAc modification of proteins is detected using an antibody developed at Johns Hopkins. Under a licensing agreement between Covance Research Products, Sigma Chemical Company and The Johns Hopkins University School of Medicine, Hart receives a percentage of royalties received by the university on sales of this antibody (CTD 110.6). The terms of this arrangement are being managed in accordance with the university’s conflict of interest policy.

Joanna Downer | EurekAlert!
Further information:
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>