Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

’Underground’ tunnels discovered as means for communication between immune system cells

21.09.2005


University of Pittsburgh researchers first to report function of tunneling nanotubules



Immune system cells are connected to each other by an extensive network of tiny tunnels that, like a building’s hidden pneumatic tube system, are used to shoot signals to distant cells. This surprising discovery, being reported by two University of Pittsburgh School of Medicine researchers in the September issue of the journal Immunity, may explain how an immune response can be so exquisitely swift. The research not only proves cells other than neurons are capable of long-distance communication, but it reveals a hereto-unknown mechanism cells use for exchanging information.

Blood-derived dendritic cells and macrophages, both antigen-presenting cells, make use of these so-called tunneling nanotubules to relay molecular messages, report Simon C. Watkins, Ph.D., and Russell D. Salter, Ph.D. Further research may show there are additional cell types with these microscopic tunnel connections. Thus far, their studies suggest the tunnels do not exist between commonly used fibroblast and tumor cell lines.


Interestingly, if not for a minor mishap while carrying out an experiment, the authors might not have discovered the existence of these physical structures and conducted the studies that revealed their role in intercellular communication.

Using a custom-built, multi-camera live cell microscopic imaging system, they report that, in a matter of seconds, dendritic cells and macrophages can send waves of calcium and other small molecules to cells hundreds of micrometers away. Each nanotubule measures between 35 and 200 nanometers across – 5000 times smaller than the width of a human hair – and at any given time, cells may have up to 75 of these extensions, each of varying lengths.

"Considering their scale, these nanotubules are allowing communication between fairly distant cells. If instead of a culture dish we were talking about a large metropolitan area, the distance would be about the equivalent to four or five city blocks. That’s nothing short of amazing," remarked Dr. Salter, associate professor of immunology at the University of Pittsburgh School of Medicine.

The authors are the first to explain the function of tunneling nanotubules, structures that were first described in fruit flies in 1998, and subsequently, identified in a handful of different types of animal and human cells.

"It’s one thing to find that this intricate physical network exists but quite astonishing to learn that immune system cells are using it to relay molecular signals to one another," said Dr. Watkins, professor and vice chair, department of cell biology and physiology, and director of the Center for Biologic Imaging, University of Pittsburgh School of Medicine.

While gap junctions – interconnecting molecular bridges that conjoin tightly packed cells – are known to generate calcium signals and transport other molecules between cells, the researchers say the tunneling nanotubules are something quite different.

"This is clearly a third form of intercellular communication, distinct from gap junctions and synapses used by nerve cells. And, it is possible that tunneling nanotubules are essential for the function of the immune system, just as gap junctions are critical for the function of cardiac muscle. Exactly how this is so, we don’t know," added Dr. Watkins, who also is a professor of immunology.

"Further study may help us better understand how they’re involved in the local inflammatory response of the immune system. For instance, we may find that dendritic cells use this network to distribute antigens to other cells and it may be conceivable to follow the entire pathway by tracing the network of tunneling nanotubules," said Dr. Salter.

The authors’ discovery builds on their recent research showing how dendritic cells respond to stimuli, but, as they freely admit in this paper, it was due in large part to an accidental observation, that giving just the slightest poke to a single cell can set off a chain reaction whereby cell after cell discharges bursts of calcium.

In their earlier studies, they described how dendritic cells unfurl hidden veils – membranes that are so thin they can barely be imaged – and use these veils to move in on and capture their target. In the presence of E. coli, this occurs so rapidly and with such vigor that in accelerated time-lapse video, the cells appear more like a pack of wild animals feeding on a carcass.

But two things baffled the researchers. Dendritic cells extended their veils even before making physical contact with E. coli, yet macrophages, cells not normally picky about the antigens they engulf, were completely unresponsive to the bacteria. In order to understand how dendritic cells first sense the presence of an antigen and why the reaction is cell-specific, the authors decided to look at calcium flux, a well-recognized early measure of stimulation in numerous cell types. The use of a fluorescent dye, which allows direct measurement of calcium levels, would determine if calcium flux occurs before dendritic cells unfurl their veils.

With a microinjection tip, they squirted a mixture of E. coli fragments into a culture dish, and, indeed, one to two minutes before the appearance of the thin membranes, there were bursts of color indicative of calcium flux. Given their earlier results, the researchers anticipated that by repeating the experiment with macrophages there’d be no response. But as luck would have it, the microscopic bacteria sample somehow got clogged inside the tip, and before Dr. Watkins realized the need to pull away from the cell, he had already given it a jab.

"On the screen it looked like flash bulbs going off in a dark concert arena," Dr. Salter recalled of that moment, when to both their great surprise the researchers witnessed how that little mishap had caused the macrophages to release bursts of calcium.

Returning to dendritic cells, they found that by giving a deliberate poke with an empty microinjection tip it caused the same reaction. But why some cells responded and others did not made Drs. Salter and Watkins wonder if there was some sort of physical structure connecting only those cells that discharged. A literature search turned up a handful of papers describing tunneling nanotubules, and further imaging using the highest magnification possible disclosed their presence in both the dendritic cells and macrophages.

In their most definitive experiment, the researchers placed dendritic cells, macrophages and a small amount of the E. coli mixture in the same culture dish. The dendritic cells, as would be expected, fluxed calcium in response to the E. coli. But a few seconds later, calcium could also be seen shooting through the tiny tunnels extending from dendritic cells to neighboring macrophages.

"This may solve some of the mystery of how a local stimulus directed at a very small number of cells can be amplified and result in a successful immune response," explained Dr. Watkins.

"Quite possibly, the tunneling nanotubules enable a small number of dendritic cells with captured antigens to reach other dendritic cells in lymph nodes, increasing the number of these cells capable of stimulating T lymphocytes," added Dr. Salter.

The finding that nanotubules play a role in sending molecular signals to other immune system cells calls into question the long-held belief that immune system cells talk to one another solely by secreting substances such as cytokines, the authors say. It now seems clear that intercellular communication is much more complicated. While it would be fascinating to see this interplay inside living tissue, detecting the tiny tubules in such a complex environment may be nearly impossible with current technology.

Lisa Rossi | EurekAlert!
Further information:
http://www.upmc.edu

More articles from Life Sciences:

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

nachricht New gene catalog of ocean microbiome reveals surprises
18.08.2017 | University of Hawaii at Manoa

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New gene catalog of ocean microbiome reveals surprises

18.08.2017 | Life Sciences

Astrophysicists explain the mysterious behavior of cosmic rays

18.08.2017 | Physics and Astronomy

AI implications: Engineer's model lays groundwork for machine-learning device

18.08.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>