Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Columbia scientists develop cancer terminator viruses


Results advance quest for viral-based therapies for cancer

Researchers at Columbia University Medical Center continue to make strides in their work to develop the next generation of effective viral-based therapies for cancer. Two papers about promising research with genetically engineered viruses studied in mice, published today in the journals Cancer Research and the Proceedings of the National Academy of Sciences (PNAS), bring us significantly closer to this objective and the start of clinical trials with these viral-based therapies in cancer patients.

Both papers were led by Paul B. Fisher, M.Ph., Ph.D., professor of clinical pathology and the Michael and Stella Chernow Urological Cancer Research Scientist at Columbia University College of Physicians and Surgeons.

In the Cancer Research paper, the researchers discuss the development of a "terminator" virus, which was administered to mice with pancreatic cancers at both primary and distant sites (akin to metastases). As predicted, when the virus was injected directly into the primary tumor, the virus destroyed not only the primary tumor, but also distant tumors. While the infection caused by the virus was sufficient to kill the primary tumor, a second weapon added to the virus ¡V interferon-gamma (IFN-ƒ×) ¡V eliminated the metastases. IFN-ƒ× elicited an anti-tumor immune response against the distant metastatic cancer cells.

In the PNAS paper, Dr. Fisher and the team describe the production of a virus conceptually similar to the "terminator" virus, which selectively replicates and kills breast cancer cells in mice. Human breast tumor xenografts were established on both sides of immune-deficient mice. Results found that treating the tumors on just one side of the animal with very few injections of this modified virus not only cured the injected tumors, but also resulted in the destruction of the tumors on the opposite side of the animal. Instead of carrying IFN-ƒ× as the other virus did, this virus carried a gene called mda-7/IL-24, a novel gene identified and cloned in Dr. Fisher’s laboratory, which is selectively toxic to cancer cells and is now in phase II clinical trials as a cancer gene therapeutic.

"We are extremely excited about these results and the prospect of one day using a form of the cancer terminator virus in human clinical trials," said Dr. Fisher, the study’s senior author. "While the results of these trials need to be investigated further and replicated in future trials, we believe that viral-based therapies will someday soon be a standard part of the cancer armamentarium."

About the "Terminator" Viruses

The "terminator" viruses have the potential to become effective treatments for a wide range of tumors - such as ovarian, pancreatic, breast, brain (glioma), prostate, skin (melanoma) and colon cancer - because the virus is constructed to exploit a characteristic of all solid cancers. However, clinical trials are necessary before such treatments can be approved by the U.S. Food and Drug Administration and available for patients.

These publications are a continuation of research published in the Jan. 25, 2005 issue of PNAS, where the same research team, also led by Dr. Fisher, incorporated gene therapy into a specially designed non-replicating virus to overcome one of the major hurdles of gene therapy: its tendency to kill normal cells in the process of eradicating cancer cells. The virus eradicated prostate cancer cells in the lab and in animals, while leaving normal cells unscathed.

The present cancer "terminator" viruses represent the next generation of therapeutic viruses that permit replication uniquely in cancer cells with simultaneous production of immune modulating and toxic genes. These viruses effectively eliminate primary tumors and distant tumors (metastases) without harming normal cells or tissues.

Dr. Fisher’s cancer research team includes Columbia University Medical Center investigators: Drs. Zao-zhong Su (research scientist), Devanand Sarkar (associate research scientist), Nicolaq Vozhilla (pathology technician), Eun Sook Park (pathology technician) and Pankaj Gupta (associate research scientist). Two scientists from Virginia Commonwealth University in Richmond, Va. are also involved in the research: Mr. Aaron Randolph (graduate student) and Dr. Kristoffer Valerie (professor).

Elizabeth Streich | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>