Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defective lymphatic vessels identified as a novel cause of adult-onset obesity

20.09.2005


Laboratory model missing one copy of Prox1 gene exhibits abnormal increase in fat accumulation around sites of lymph leakage from defective lymphatic vessels, according to St. Jude



Leaky lymphatic vessels are the leading cause of the adult onset obesity observed in a laboratory model developed by investigators at St. Jude Children’s Research Hospital. The findings suggest that the abnormal leakage of lymph fluid from the ruptured lymphatic vessels stimulates the accumulation of fat, particularly in regions of the body rich in lymphatics, the researchers said. The lymphatic vasculature (system of capillaries and vessels) that drains lymph is essential for the immune response in inflammation, and is the main route for the spreading of metastatic tumors to the lymph nodes.

The St. Jude investigators showed that removal of one of the two copies of the gene Prox1 disrupts normal development of the lymphatic vasculature, leading to leakage of lymph from ruptured lymphatic vessels, and subsequent obesity. Specifically, the researchers found that adipocytes (fat cells) near leaking lymphatic vessels under the skin and in the abdomen were significantly larger than normal, and therefore able to store more lipids (e.g., fatty acids and triglycerides, used as an energy source).


"This is the first such evidence in an in vivo model showing that defects in the integrity of the lymphatic vasculature could lead to adult obesity," said Guillermo Oliver, Ph.D., an associate member of the Genetics and Tumor Cell Biology Department at St. Jude. "And therefore, this is the first model available for studying obesity linked to faulty lymphatic vessels. It will be an important tool for studying this novel form of adult-onset obesity, as well as diseases of lymphatic vessels, and eventually, extending those findings to humans." Oliver is senior author of a report on this work that appears in the September 18 online issue of Nature Genetics.

The laboratory model (Prox1+/- ) lacked one of two copies of the Prox1 gene, which is required for proper development of the lymphatic system. Previously, Oliver’s laboratory reported that Prox1 activity is necessary for the normal development of cells making up the lymphatic vasculature; and that it is the subsequent budding and sprouting of those cells that give rise to the lymphatic system (Cell [98]:769-778; 1999).

Most Prox1+/- heterozygous (i.e., having only one copy of the gene) models die quickly in the postnatal period as a consequence of extensive lymphatic leakage that accumulates in the abdomen and thorax (chest). "However, those with a milder disruption of their lymphatic vasculature were able to survive and become obese with age," Oliver said.

"Interestingly, those that survived did not develop diabetes, as commonly seen in different types of obesity," he added. "This told us that the type of obesity we were seeing in this laboratory model was different from forms of obesity that are commonly associated with diabetes." The researchers also demonstrated that lymph removed from the abdominal cavity of the Prox1+/- models and added to cultured cells can promote adipocyte differentiation, most likely due to certain factors present in the collected lymph.

"Our findings might encourage physicians to consider that at least some of their obese patients might be suffering from a problem that can’t be solved by eating less and exercising more," Oliver said. Just as many vascular disorders arise because of blood vessel defects, other defects of the closely related lymphatic vessels in addition to edema could also occur in humans, he added.

Kelly Perry | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

nachricht Big data approach to predict protein structure
27.03.2017 | Karlsruher Institut für Technologie (KIT)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Big data approach to predict protein structure

27.03.2017 | Life Sciences

Parallel computation provides deeper insight into brain function

27.03.2017 | Life Sciences

Weather extremes: Humans likely influence giant airstreams

27.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>