Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Defective lymphatic vessels identified as a novel cause of adult-onset obesity

20.09.2005


Laboratory model missing one copy of Prox1 gene exhibits abnormal increase in fat accumulation around sites of lymph leakage from defective lymphatic vessels, according to St. Jude



Leaky lymphatic vessels are the leading cause of the adult onset obesity observed in a laboratory model developed by investigators at St. Jude Children’s Research Hospital. The findings suggest that the abnormal leakage of lymph fluid from the ruptured lymphatic vessels stimulates the accumulation of fat, particularly in regions of the body rich in lymphatics, the researchers said. The lymphatic vasculature (system of capillaries and vessels) that drains lymph is essential for the immune response in inflammation, and is the main route for the spreading of metastatic tumors to the lymph nodes.

The St. Jude investigators showed that removal of one of the two copies of the gene Prox1 disrupts normal development of the lymphatic vasculature, leading to leakage of lymph from ruptured lymphatic vessels, and subsequent obesity. Specifically, the researchers found that adipocytes (fat cells) near leaking lymphatic vessels under the skin and in the abdomen were significantly larger than normal, and therefore able to store more lipids (e.g., fatty acids and triglycerides, used as an energy source).


"This is the first such evidence in an in vivo model showing that defects in the integrity of the lymphatic vasculature could lead to adult obesity," said Guillermo Oliver, Ph.D., an associate member of the Genetics and Tumor Cell Biology Department at St. Jude. "And therefore, this is the first model available for studying obesity linked to faulty lymphatic vessels. It will be an important tool for studying this novel form of adult-onset obesity, as well as diseases of lymphatic vessels, and eventually, extending those findings to humans." Oliver is senior author of a report on this work that appears in the September 18 online issue of Nature Genetics.

The laboratory model (Prox1+/- ) lacked one of two copies of the Prox1 gene, which is required for proper development of the lymphatic system. Previously, Oliver’s laboratory reported that Prox1 activity is necessary for the normal development of cells making up the lymphatic vasculature; and that it is the subsequent budding and sprouting of those cells that give rise to the lymphatic system (Cell [98]:769-778; 1999).

Most Prox1+/- heterozygous (i.e., having only one copy of the gene) models die quickly in the postnatal period as a consequence of extensive lymphatic leakage that accumulates in the abdomen and thorax (chest). "However, those with a milder disruption of their lymphatic vasculature were able to survive and become obese with age," Oliver said.

"Interestingly, those that survived did not develop diabetes, as commonly seen in different types of obesity," he added. "This told us that the type of obesity we were seeing in this laboratory model was different from forms of obesity that are commonly associated with diabetes." The researchers also demonstrated that lymph removed from the abdominal cavity of the Prox1+/- models and added to cultured cells can promote adipocyte differentiation, most likely due to certain factors present in the collected lymph.

"Our findings might encourage physicians to consider that at least some of their obese patients might be suffering from a problem that can’t be solved by eating less and exercising more," Oliver said. Just as many vascular disorders arise because of blood vessel defects, other defects of the closely related lymphatic vessels in addition to edema could also occur in humans, he added.

Kelly Perry | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>