Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new target in fight against obesity

20.09.2005


University of Cincinnati (UC) scientists have identified a possible new target for treating obesity and diabetes.



The new target, a molecule called hVps34, is activated by amino acids (nutrients) entering the cell. This molecule triggers the activation of an enzyme, S6 Kinase 1 (S6K1), whose function UC researchers linked last year to obesity and insulin resistance.

"Insulin and amino acids both play a critical role in growth and development," said lead author George Thomas, PhD, interim director of UC’s Genome Research Institute and Department of Genome Science. "Both are responsible for ’driving’ cell growth. Now we have found that they actually work through independent pathways to trigger a molecule that turns on S6K1.


"Since we know S6K1 is linked to obesity and insulin resistance," he added, "learning that it can actually be turned on by more than one pathway is important, because it represents a potential target to regulate obesity."

The findings appear in the Sept. 19, 2005, online edition of Proceedings of the National Academies of Sciences (PNAS).

In 2004, Dr. Thomas led research that identified S6K1’s function. Normally turned on through a series of reactions initiated by the presence of insulin, it works to drive growth. But it also has a second regulatory function.

When an organism "overfeeds," S6K1 becomes hyperactive, essentially telling insulin to stop bringing more nutrients into the cell. This hyperactive regulation actually results in insulin resistance.

"It would make sense then," said Dr. Thomas, "that once S6K1 tells insulin to stop working, this enzyme would become inactive and its other function of promoting growth would also stop."

But in laboratory studies, Dr. Thomas and his team noticed that mice on high-fat diets continued to grow, even after insulin quit performing its normal function--indicating that S6K1 was still active even after it had seemingly sealed its own fate by shutting down the very trigger that turns it on.

In single-cell organisms, said Dr. Thomas, feeding is the organism’s main concern. As multicelluar organisms arose, there became a need to share nutrients within different cell types in order to develop and grow. It is believed that growth hormones, such as insulin, developed to carryout this function.

But in this transition from a self-serving single cell to a complex organism, the feeding-only amino acid pathways and the sharing, insulin pathways were merged.

Scientists have thought that amino acids began entering the cell at some point along the insulin pathway.

"We have determined that amino acids are actually entering the cell at a different location than previously thought, and that these nutrients are working independently of insulin," said Dr. Thomas.

"Knowing that S6K1 can be activated by more than one pathway will allow us to learn more about the mechanisms driving obesity and insulin resistance."

This research was funded by the National Institutes of Health Mouse Models for Human Cancer Consortium, the Air Force Office of Scientific Research, the Netherlands Genomics Initiative, and the Collaborative Cancer Research Project of the Swiss Cancer League.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Researchers identify potentially druggable mutant p53 proteins that promote cancer growth
09.12.2016 | Cold Spring Harbor Laboratory

nachricht Plant-based substance boosts eyelash growth
09.12.2016 | Fraunhofer-Institut für Angewandte Polymerforschung IAP

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>