Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify new target in fight against obesity

20.09.2005


University of Cincinnati (UC) scientists have identified a possible new target for treating obesity and diabetes.



The new target, a molecule called hVps34, is activated by amino acids (nutrients) entering the cell. This molecule triggers the activation of an enzyme, S6 Kinase 1 (S6K1), whose function UC researchers linked last year to obesity and insulin resistance.

"Insulin and amino acids both play a critical role in growth and development," said lead author George Thomas, PhD, interim director of UC’s Genome Research Institute and Department of Genome Science. "Both are responsible for ’driving’ cell growth. Now we have found that they actually work through independent pathways to trigger a molecule that turns on S6K1.


"Since we know S6K1 is linked to obesity and insulin resistance," he added, "learning that it can actually be turned on by more than one pathway is important, because it represents a potential target to regulate obesity."

The findings appear in the Sept. 19, 2005, online edition of Proceedings of the National Academies of Sciences (PNAS).

In 2004, Dr. Thomas led research that identified S6K1’s function. Normally turned on through a series of reactions initiated by the presence of insulin, it works to drive growth. But it also has a second regulatory function.

When an organism "overfeeds," S6K1 becomes hyperactive, essentially telling insulin to stop bringing more nutrients into the cell. This hyperactive regulation actually results in insulin resistance.

"It would make sense then," said Dr. Thomas, "that once S6K1 tells insulin to stop working, this enzyme would become inactive and its other function of promoting growth would also stop."

But in laboratory studies, Dr. Thomas and his team noticed that mice on high-fat diets continued to grow, even after insulin quit performing its normal function--indicating that S6K1 was still active even after it had seemingly sealed its own fate by shutting down the very trigger that turns it on.

In single-cell organisms, said Dr. Thomas, feeding is the organism’s main concern. As multicelluar organisms arose, there became a need to share nutrients within different cell types in order to develop and grow. It is believed that growth hormones, such as insulin, developed to carryout this function.

But in this transition from a self-serving single cell to a complex organism, the feeding-only amino acid pathways and the sharing, insulin pathways were merged.

Scientists have thought that amino acids began entering the cell at some point along the insulin pathway.

"We have determined that amino acids are actually entering the cell at a different location than previously thought, and that these nutrients are working independently of insulin," said Dr. Thomas.

"Knowing that S6K1 can be activated by more than one pathway will allow us to learn more about the mechanisms driving obesity and insulin resistance."

This research was funded by the National Institutes of Health Mouse Models for Human Cancer Consortium, the Air Force Office of Scientific Research, the Netherlands Genomics Initiative, and the Collaborative Cancer Research Project of the Swiss Cancer League.

Dama Kimmon | EurekAlert!
Further information:
http://www.uc.edu

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>