Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how malaria parasite disperses from red blood cells

20.09.2005


Researchers at the National Institute of Child Health and Human Development have determined the sequence in which the malaria parasite disperses from the red blood cells it infects. The National Institute of Child Health and Human Development is one of the Institutes comprising the National Institutes of Health. The study appears in the September 20 Current Biology.



"This discovery provides the groundwork for possible new approaches to treating malaria, " said Duane Alexander, M.D., Director of the NICHD. "The malaria parasite is growing resistant to the drugs used to treat it, and new knowledge is essential for developing strategies to protect against the disease."

The study supplants earlier theories on how the malaria parasite spreads from the red blood cells it infects.


According to the World Health Organization, malaria kills more than 1 million people a year. (The WHO fact sheet, "What is Malaria?" is available on the organization’s Web site at http://mosquito.who.int/cmc_upload/0/000/015/372/RBMInfosheet_1.htm.)

Malaria is caused by four species of the parasite Plasmodium, the most common and deadly of which is Plasmodium falciparum. P. falciparum spends part of its life cycle in the salivary glands of mosquitoes and is transmitted to human beings through the bite of infected mosquitoes. The parasite infects red blood cells. Called a merozoite at the stage of its life when it infects red blood cells, the parasite multiplies inside the cell, until the cell ruptures and releases them. The newly released merozoites infect still other cells, and the process begins again.

To conduct the study, the researchers stained red blood cells infected with P. falciparum with two kinds of dye, explained the study’s senior author, Joshua Zimmerberg, M.D., Ph.D., Chief of NICHD’s Laboratory of Cellular and Molecular Biophysics. One dye stained the blood cells green, the other stained the parasites red.

In the first stage of the merozoites’ release, which the researchers dubbed the "irregular schizont" stage, the red blood cell resembles a lop-sided fried egg, with the parasites visible as a sphere near the center of the cell. (A diagram of the entire sequence appears at http://www.nichd.nih.gov/new/releases/malaria_graphic.cfm.) The cell’s lop-sided appearance probably results from destruction of the cytoskeleton, the molecular scaffolding that helps the cell to maintain its rounded shape.

In the next stage, called the "flower" stage, the red blood cell assumes a roughly spherical shape, covered with rounded structures that resemble the petals of a flower. Shortly thereafter, the blood cell’s membrane appears to break apart. At roughly the same time, cellular compartments, called vacuoles, which encase the newly formed merozoites, also break apart. The entire process has an explosive appearance, dispersing the merozoites some distance from the cell.

During the release, Dr. Zimmerberg explained, the cell membrane appears to collapse inward upon itself and fragment into pieces.

One previous theory held that the red blood cells and the merozoite-containing vacuoles inside them swelled and then burst like a balloon containing too much air.

"The swelling was an artifact of too much light from the microscope," Dr. Zimmerberg said. "The cell membrane was light sensitive. When we turned the light down, we didn’t see the swelling." Rather, he said, upon release of the merozoites, the cell membrane appeared to contract in upon itself.

Another theory held that the merozoite-containing vacuoles would fuse with the cell membrane, and then release their contents.

"But we didn’t see any fusion," Dr. Zimmerberg said.

The third theory held that the cell membrane ruptured, expelling merozoite-containing vacuoles. Again, however, the researchers observed that this theory also offered an inaccurate picture, as the vacuoles ruptured at roughly the same time as the cell membrane.

Each step in the release process is a potential avenue for new therapies to treat the disease, Dr. Zimmerberg said. By first understanding how the parasite brings about these steps, it may be possible to find ways to prevent them from occurring.

Robert Bock | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>