Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how malaria parasite disperses from red blood cells

20.09.2005


Researchers at the National Institute of Child Health and Human Development have determined the sequence in which the malaria parasite disperses from the red blood cells it infects. The National Institute of Child Health and Human Development is one of the Institutes comprising the National Institutes of Health. The study appears in the September 20 Current Biology.



"This discovery provides the groundwork for possible new approaches to treating malaria, " said Duane Alexander, M.D., Director of the NICHD. "The malaria parasite is growing resistant to the drugs used to treat it, and new knowledge is essential for developing strategies to protect against the disease."

The study supplants earlier theories on how the malaria parasite spreads from the red blood cells it infects.


According to the World Health Organization, malaria kills more than 1 million people a year. (The WHO fact sheet, "What is Malaria?" is available on the organization’s Web site at http://mosquito.who.int/cmc_upload/0/000/015/372/RBMInfosheet_1.htm.)

Malaria is caused by four species of the parasite Plasmodium, the most common and deadly of which is Plasmodium falciparum. P. falciparum spends part of its life cycle in the salivary glands of mosquitoes and is transmitted to human beings through the bite of infected mosquitoes. The parasite infects red blood cells. Called a merozoite at the stage of its life when it infects red blood cells, the parasite multiplies inside the cell, until the cell ruptures and releases them. The newly released merozoites infect still other cells, and the process begins again.

To conduct the study, the researchers stained red blood cells infected with P. falciparum with two kinds of dye, explained the study’s senior author, Joshua Zimmerberg, M.D., Ph.D., Chief of NICHD’s Laboratory of Cellular and Molecular Biophysics. One dye stained the blood cells green, the other stained the parasites red.

In the first stage of the merozoites’ release, which the researchers dubbed the "irregular schizont" stage, the red blood cell resembles a lop-sided fried egg, with the parasites visible as a sphere near the center of the cell. (A diagram of the entire sequence appears at http://www.nichd.nih.gov/new/releases/malaria_graphic.cfm.) The cell’s lop-sided appearance probably results from destruction of the cytoskeleton, the molecular scaffolding that helps the cell to maintain its rounded shape.

In the next stage, called the "flower" stage, the red blood cell assumes a roughly spherical shape, covered with rounded structures that resemble the petals of a flower. Shortly thereafter, the blood cell’s membrane appears to break apart. At roughly the same time, cellular compartments, called vacuoles, which encase the newly formed merozoites, also break apart. The entire process has an explosive appearance, dispersing the merozoites some distance from the cell.

During the release, Dr. Zimmerberg explained, the cell membrane appears to collapse inward upon itself and fragment into pieces.

One previous theory held that the red blood cells and the merozoite-containing vacuoles inside them swelled and then burst like a balloon containing too much air.

"The swelling was an artifact of too much light from the microscope," Dr. Zimmerberg said. "The cell membrane was light sensitive. When we turned the light down, we didn’t see the swelling." Rather, he said, upon release of the merozoites, the cell membrane appeared to contract in upon itself.

Another theory held that the merozoite-containing vacuoles would fuse with the cell membrane, and then release their contents.

"But we didn’t see any fusion," Dr. Zimmerberg said.

The third theory held that the cell membrane ruptured, expelling merozoite-containing vacuoles. Again, however, the researchers observed that this theory also offered an inaccurate picture, as the vacuoles ruptured at roughly the same time as the cell membrane.

Each step in the release process is a potential avenue for new therapies to treat the disease, Dr. Zimmerberg said. By first understanding how the parasite brings about these steps, it may be possible to find ways to prevent them from occurring.

Robert Bock | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>