Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Neanderthal teeth grew no faster than comparable modern humans’

20.09.2005


Recent research suggested that ancient Neanderthals might have had an accelerated childhood compared to that of modern humans but that seems flawed, based on a new assessment by researchers from Ohio State University and the University of Newcastle .



They found that the rate of tooth growth present in the Neanderthal fossils they examined was comparable to that of three different populations of modern humans.

And since the rate of tooth growth has become a more-accepted tool for estimating the length of childhood among hominids, the finding is the latest evidence suggesting that Neanderthals may not have been as different from modern humans as some researchers have thought.


The study by Debbie Guatelli-Steinberg, assistant professor of anthropology at Ohio State , appeared in the current issue of the Proceedings of the National Academy of Sciences. Donald J. Reid, lecturer in oral biology at the University of Newcastle , Thomas A. Bishop, associate professor of statistics, and Clark Larsen, professor and chair of anthropology, both at Ohio State , were co-authors in the study.

“Based on our study of the enamel of these Neanderthal teeth and other modern ones, we can’t support the claim that Neanderthals grew up more quickly than do modern humans,” she said.

Key to this conclusion are microscopic lines on the outside of teeth that mark the incremental growth of enamel on a young tooth. Like tree rings that can gauge the age of a redwood, these striations – called perikymata – record new growth on the surface of the tooth.

Researchers know from earlier work that these markings are present in all forming teeth, signifying six to 12 days of growth. By multiplying that interval by the number of perikymata on a tooth’s surface, researchers can gauge how long it took for the tooth to mature. And that gives them an indication of the length of an individual’s childhood.

Neanderthals, Homo neanderthalensis, were the dominant hominid inhabiting most of what is now Europe and western Asia . Remains have been found as far south as Iraq and as far north as Great Britain . Fossil skulls reveal the distinctively prominent brows and missing chins that set them apart from later humans.

They thrived from about 150,000 to 30,000 years ago until their lineage failed for as-yet unknown reasons. Most researchers have argued that their life in extremely harsh, Ice Age-like environments, coupled with their limited technological skills, ultimately led to their demise.

In a study published last year in the journal Nature, other researchers contended that Neanderthal teeth took 15 percent less time to reach maturity than those in later Homo sapiens, suggesting to them that a Neanderthal childhood would be shorter than our own.

But Guatelli-Steinberg’s team wanted a broader comparison and therefore compared the teeth from Neanderthals to those of three modern populations – people currently living in Newcastle-upon-Tyne , U.K. ; indigenous people from southern Africa, and Inuit from Alaska dating from 500 B.C. until the present.

“We chose these three groups since they would provide a good cross-section of various populations from different regions of the world,” she said. “We feel that they give us some insights into the variation that exists within modern humans.”

For the study, the researchers used precise dental impressions Guatelli-Steinberg and Larsen made of 55 teeth believed to come from 30 Neanderthal individuals. These were compared to 65 teeth from 17 Inuit, 134 teeth from 114 southern Africans and 115 teeth from as many Newcastle residents. In all cases, the researchers tallied the number of perikymata on the enamel surface of the teeth.

Guatelli-Steinberg said that the results showed that the enamel formation times for the Neanderthals fell easily within the range of time shown by teeth from the three modern populations – a conclusion that did not support a shorter childhood for the Neanderthals.

Enticing though it may be, these new findings haven’t convinced the researchers that a Neanderthal childhood was equal to a modern human’s.

“The missing key bit of data to show that would be evidence for when the first molar tooth erupted in the Neanderthals, and we simple have no evidence of when that occurred,” she said.

The length of time is important, the researchers say, because unlike all other primates, humans have an extended period of childhood growth, during which brain matures both in size and through experiences. Some earlier hominids matured far more quickly than modern humans.

“The question is when exactly did that pattern of development evolve in the growth of humans,” she said.

Support for this research came from a grant from the Leakey Foundation and from the College of Social and Behavioral Sciences at Ohio State.

Debbie Guatelli-Steinberg | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>