Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCSD discovery may provide novel method to generate medically useful proteins

19.09.2005


Graphic shows molecular structure of predator protein variants (colors reveal different amino acids) Credit: Jason Miller, UCSD


A team led by UCSD biochemists has discovered the mechanism by which a simple organism can produce 10 trillion varieties of a single protein, a finding that provides a new tool to develop novel drugs.

In the September 18 advance on-line publication of the journal Nature Structural and Molecular Biology, the researchers describe the mechanism by which a virus that infects bacteria—called a bacteriophage, or phage—can generate a kaleidoscope of variants of a particular protein. The paper will appear in print in Nature Structural and Molecular Biology in October.

Since this degree of protein diversity is extremely rare, recreating the process in a test tube could give researchers a new way to generate therapeutic enzymes, vaccines and other medically important proteins.



“This is only the second type of massively variable protein ever discovered,” explained Partho Ghosh, a professor of chemistry and biochemistry at UCSD who headed the research team. “Only antibodies have more variation than this protein in phage. However, the genetic mechanism used by the phage to generate this diversity is completely different from that used by animals to produce antibodies, and has the advantage of giving the protein greater stability.”

“If we can learn from these organisms how to set up a system that churns out proteins with enormous variability, it may be possible to target these new proteins to specific cells to treat disease,” said Stephen McMahon, a former postdoctoral fellow in Ghosh’s lab who conducted much of the research. “This idea has already been picked up by the biotech industry.”

The function of the massively variable phage protein is to tether the phage to the bacteria they infect. The phage “predator” protein fits into a “prey” protein on the bacteria like a three-dimensional puzzle piece. However, the bacteria are constantly changing the proteins on their surface. To keep up with the unpredictable changes in the prey protein, the phage must generate many different predator proteins for at least one to have an acceptable fit.

In their paper, the researchers describe how by altering the amino acids at one or more of just 12 sites on the predator protein, the phage are able to generate 10 trillion proteins, each with the potential to bind to a different prey protein. This variability arises as DNA is being copied into the RNA blueprint for the protein. The sequence of DNA bases at the 12 sites has unique characteristics that cause frequent mistakes to be made in the copying process. As a result, the RNA ends up specifying a different amino acid, and a protein with different structural and chemical properties is created.

Antibodies are another type predator protein that must respond to rapidly evolving prey proteins, because microorganisms are constantly altering proteins on their surfaces to evade the immune system. Unlike the phage protein, antibodies have a complicated loop structure. The size of the loops varies in addition to the amino acid building blocks that constitute the antibody protein. Although this mechanism can generate more than 100 trillion different antibodies, the researchers say replicating it in a test tube would be very challenging because the loops would have the tendency to fold incorrectly.

“Because of its stability, the phage protein makes a better model to create protein diversity in a test tube,” explained Jason Miller, a graduate student in Ghosh’s lab who conducted much of the research. “Our discovery shows that nature has provided at least two completely different methods to generate a huge amount of protein variability, and it opens up a whole new platform for protein development.”

Other contributors to the paper were Jeffrey Lawton, Department of Chemistry, Eastern University; Donald Kerkow, The Scripps Research Institute; Marc Marti-Renom, Eswar Narayanan, and Andrej Sali, Departments of Biopharmaceutical Sciences and Pharmaceutical Chemistry, University of California, San Francisco; Asher Hodes, and Jeffrey Miller, Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine and the Molecular Biology Institute, University of California, Los Angeles; and Sergei Doulatov, Department of Microbiology and Medical Genetics, University of Toronto.

Stephen McMahon is now at the Centre for Biomolecular Sciences at The University of St. Andrews in Scotland.

This research was supported by a W.M. Keck Distinguished Young Scholars in Medicine Award and a UC Discovery Grant.

Sherry Seethaler | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>