Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover how compounds prevent viruses from entering cells

19.09.2005


Compounds called defensins--known to prevent viruses from entering cells--appear to do so by preventing the virus from merging to cells’ outer membrane, according to a study by researchers at the National Institute of Child Health and Human Development and the National Heart Lung and Blood Institute, both of the National Institutes of Health, and the University of California at Los Angeles.



The study, appearing in the September 11 Nature Immunology, also received funding from NIH’s National Center for Research Resources.

"This discovery provides a basic understanding of a first-line defense against such viruses as HIV and the influenza virus," said Duane Alexander, M.D., Director of the NICHD. "This finding may ultimately lead to new strategies for preventing viral illness, and to increased understanding of why some individuals are more resistant to certain kinds of viral infection than are other individuals."


The means by which many viruses infect a cell is a two-step process, said the study’s senior author, Leonid V. Chernomordik, Ph.D., Head of NICHD’s Section on Membrane Biology in the Laboratory of Cellular and Molecular Biophysics. First, the membrane of the virus’ outer coating, or envelope, must attach, or bind to, the outer membrane of the cell. After this attachment has taken place, the viral envelope membrane combines with, or fuses to, the cell membrane. After the two membranes have fused, the virus inserts its genetic material into the cell.

Defensins are produced by cells that are among the first to come in contact with viruses, Dr. Chernomordik explained. Such cells include leukocytes, a type of immune cell, and epithelial cells, which line the surfaces of many organs and tissues.

In the current study, the researchers studied epithelial cells from the inner surface of the lungs. The researchers discovered that defensins block the influenza virus entry into cells by preventing the fusion of viral and cell membranes. Specifically, the researchers studied the antiviral effects of two different classes of defensins, theta-defensin and beta defensin.

Membranes--the outer covering of cells and of many kinds of viruses--are coated with a layer of molecules called glycoproteins. The glycoproteins protrude from the membranes’ surface, in somewhat the same way bristles stick out of a hairbrush. (See figure 1 at www.nichd.nih.gov/new/releases/defensins.cfm.) When the virus first infects the cell, glycoproteins on both the cell surface and on the virus spread apart, as the viral membrane approaches the cell membrane. To extend the hairbrush comparison, it’s as if you could slide the bristles to the side, and leave bare patches on each hairbrush. At the bare patches, both the cell membrane and the viral envelope come together, and membrane fusion takes place.

Defensins, the researchers discovered, bind crosswise to glycoproteins, preventing the viral and cell glycoproteins from spreading apart. In keeping with the hairbrush comparison, it’s as if the bristles of the hairbrushes were bound together with numerous small rubber bands. (See figure 2 at www.nichd.nih.gov/new/releases/defensins.cfm.)

"Defensins do not kill the virus, they just prevent it from entering the cell," Dr. Chernomordik said. "Viruses that are not allowed to enter the cells can then be destroyed by the cells of the immune system."

Dr. Chernomordik and his colleagues also studied the activity of mannan-binding lectin, a compound produced by the liver. Like defensins, mannan-binding lectin also protects against viral infection. The researchers discovered that mannan-binding lectin prevents viral infection in the same way that defensins do, by binding crosswise to glycoproteins.

Future studies of defensins may yield new strategies for preventing viral diseases, Dr. Chernomordik added. For example, by learning more about how defensins bind to glycoproteins, researchers one day may be able to devise new drugs that prevent viruses from entering cells.

Similarly, researchers might explore whether potential differences in defensin production might affect the ability to resist viral infection, Dr. Chernomordik theorized. For example, slight variations in the genes for defensins might make the molecules either more, or less, effective, at combating viruses. Similarly, some individuals may produce more defensins than do others.

Robert Bock | EurekAlert!
Further information:
http://www.nih.gov

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>