Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing helps physicians zero in on eye disease

16.09.2005


U-M Kellogg Eye Center scientists are first to screen for multiple retinal disease genes on a single microchip — and it’s cost-effective



Rapid genetic testing for eye disease is becoming a reality, thanks to a technology developed at the University of Michigan Kellogg Eye Center. Scientists have created a first-of-its-kind test on a microchip array that will help physicians hone their diagnoses for patients with the blinding disease known as retinitis pigmentosa (RP). The screening technique has proven to be reliable and cost-effective.

In the September issue of Investigative Ophthalmology & Visual Science (IOVS), scientists at the U-M Department of Ophthalmology and Visual Sciences report on the arRP-I sequencing array, the first technology to screen simultaneously for mutations in multiple genes on a single platform.


This is a novel tool for scientists and physicians alike, says lead author and Kellogg scientist Radha Ayyagari, Ph.D. "For diseases that are associated with multiple genes, like RP, we now have a new and faster method for identifying the underlying genetic basis. This is also useful in analyzing complex patterns of inheritance and for understanding how causative genes might interact with each other."

RP is a group of diseases, affecting one in every 3,500 individuals, in which retinal degeneration leads to blindness or severe vision loss.

Among the outward signs and symptoms are loss of peripheral vision, night blindness, and abnormal results from an electroretinogram (ERG), a test that measures the electrical activity and function of the retina. A patient with the autosomal recessive form of the disease (arRP) has inherited one gene from each parent, neither of whom is affected by RP.

It is nearly impossible to identify which form of the disease a patient has through a clinical examination alone, notes John R. Heckenlively, M.D., a specialist in inherited eye disease who also participated in the study.

"Identifying the precise genetic mutation responsible for an individual’s disease will allow us to provide a precise diagnosis, and this knowledge will also allow us to apply genetic therapies as they are developed," he says.

Some clues to treatments are beginning to emerge in animal models, and scientists expect future therapies to be very specific to the type of RP.

"Perhaps one patient will benefit from dramatically limiting exposure to sun or artificial light, and another will use certain vitamins or supplements to stop progression of the disease," says Heckenlively. "Obtaining a molecular diagnosis is going to be very important in helping to guide gene-based treatments for patients in the coming years," he concludes.

Ayyagari’s study involved 70 individuals with a clinical diagnosis of arRP. Thirty-five had not been previously screened, and 35 others with known genetic mutations were screened to validate the results.

The arRP-I chip contained sequences, or genetic codes, of 11 genes that carry approximately 180 mutations associated with early-onset retinal degenerations. To date more than 30 genes have been identified for various forms of RP. Ayyagari notes that while the size of the chip currently limits the ability to array all known RP genes, larger platforms are likely to be available soon.

The arRP-I chips designed by the Kellogg research team produced 97.6 percent of the sequence analyzed with greater than 99 percent accuracy and reproducibility. The material cost of the arRP-I chip was 23 percent less that of current sequencing methods. That figure does not take into account the substantial savings in time and labor realized by analyzing multiple genes at once. These chips can detect both previously known and novel mutations.

Kellogg scientists and physicians expect that genetic technologies will grow dramatically in the next five years, particularly as additional space becomes available in the recently approved expansion to the Eye Center.

A proposed expansion of the U-M’s eye disease genetic testing and counseling center will allow Ayyagari and Heckenlively to screen large numbers of interested patients, provide counseling and education on the implications of genetic testing, and advance the pace of research toward targeted genetic therapies for RP and other inherited eye diseases.

Betsy Nisbet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>