Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Genetic testing helps physicians zero in on eye disease

16.09.2005


U-M Kellogg Eye Center scientists are first to screen for multiple retinal disease genes on a single microchip — and it’s cost-effective



Rapid genetic testing for eye disease is becoming a reality, thanks to a technology developed at the University of Michigan Kellogg Eye Center. Scientists have created a first-of-its-kind test on a microchip array that will help physicians hone their diagnoses for patients with the blinding disease known as retinitis pigmentosa (RP). The screening technique has proven to be reliable and cost-effective.

In the September issue of Investigative Ophthalmology & Visual Science (IOVS), scientists at the U-M Department of Ophthalmology and Visual Sciences report on the arRP-I sequencing array, the first technology to screen simultaneously for mutations in multiple genes on a single platform.


This is a novel tool for scientists and physicians alike, says lead author and Kellogg scientist Radha Ayyagari, Ph.D. "For diseases that are associated with multiple genes, like RP, we now have a new and faster method for identifying the underlying genetic basis. This is also useful in analyzing complex patterns of inheritance and for understanding how causative genes might interact with each other."

RP is a group of diseases, affecting one in every 3,500 individuals, in which retinal degeneration leads to blindness or severe vision loss.

Among the outward signs and symptoms are loss of peripheral vision, night blindness, and abnormal results from an electroretinogram (ERG), a test that measures the electrical activity and function of the retina. A patient with the autosomal recessive form of the disease (arRP) has inherited one gene from each parent, neither of whom is affected by RP.

It is nearly impossible to identify which form of the disease a patient has through a clinical examination alone, notes John R. Heckenlively, M.D., a specialist in inherited eye disease who also participated in the study.

"Identifying the precise genetic mutation responsible for an individual’s disease will allow us to provide a precise diagnosis, and this knowledge will also allow us to apply genetic therapies as they are developed," he says.

Some clues to treatments are beginning to emerge in animal models, and scientists expect future therapies to be very specific to the type of RP.

"Perhaps one patient will benefit from dramatically limiting exposure to sun or artificial light, and another will use certain vitamins or supplements to stop progression of the disease," says Heckenlively. "Obtaining a molecular diagnosis is going to be very important in helping to guide gene-based treatments for patients in the coming years," he concludes.

Ayyagari’s study involved 70 individuals with a clinical diagnosis of arRP. Thirty-five had not been previously screened, and 35 others with known genetic mutations were screened to validate the results.

The arRP-I chip contained sequences, or genetic codes, of 11 genes that carry approximately 180 mutations associated with early-onset retinal degenerations. To date more than 30 genes have been identified for various forms of RP. Ayyagari notes that while the size of the chip currently limits the ability to array all known RP genes, larger platforms are likely to be available soon.

The arRP-I chips designed by the Kellogg research team produced 97.6 percent of the sequence analyzed with greater than 99 percent accuracy and reproducibility. The material cost of the arRP-I chip was 23 percent less that of current sequencing methods. That figure does not take into account the substantial savings in time and labor realized by analyzing multiple genes at once. These chips can detect both previously known and novel mutations.

Kellogg scientists and physicians expect that genetic technologies will grow dramatically in the next five years, particularly as additional space becomes available in the recently approved expansion to the Eye Center.

A proposed expansion of the U-M’s eye disease genetic testing and counseling center will allow Ayyagari and Heckenlively to screen large numbers of interested patients, provide counseling and education on the implications of genetic testing, and advance the pace of research toward targeted genetic therapies for RP and other inherited eye diseases.

Betsy Nisbet | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Molecular Force Sensors
20.09.2017 | Max-Planck-Institut für Biochemie

nachricht Foster tadpoles trigger parental instinct in poison frogs
20.09.2017 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Molecular Force Sensors

20.09.2017 | Life Sciences

Producing electricity during flight

20.09.2017 | Power and Electrical Engineering

Tiny lasers from a gallery of whispers

20.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>