Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Water management in cells

16.09.2005


Water management is the key to regulating cell volume says Dutch researcher Bas Tomassen. He investigated the uptake and secretion of water by the plasma membrane of animal and human cells.



Cell volume is the outcome of a subtle balance between water uptake and secretion by the cell plasma membrane. A cell can regulate its volume by adjusting the salt concentrations in and around the cell. Exactly how this process works is still not known. Bas Tomassen has identified a number of important mechanisms that play a role in this process.

Increasing the salt concentration in the cell or decreasing the salt concentration around the cell leads to an influx of water. This principle is known as osmosis. Cells activate various channels to remove excess water and salt or osmotically active particles from the cell.


Tomassen studied cells that are highly sensitive for osmotic disruption. He discovered that cells permeable for water can more easily respond to changes in salt concentrations and that volume changes are facilitated by the presence of specific channels that transport water.

Slow organic reaction

In addition to water channels and ion channels, organic particles play an important role. If the salt balance is disrupted, so-called ’volume-regulated anion channels’ are first of all activated. These ensure that chloride ions leave the cell. Further research revealed that the efflux of organics only starts one or two minutes later. This efflux only takes place if there is a large difference between the intracellular and extracellular salt concentrations. From this the researcher concluded that the efflux of organics is a second line of defence, which is only activated if there are considerable problems.

All organisms in the natural environment are confronted with salt balances in and around their cells. Plants, bacteria and fungi have an extra cell wall that provides the cell with additional protection. Animal cells, such as human cells, do not have this. They have developed other mechanisms, a number of which have been identified by Bas Tomassen.

Bas Tomassen’s research was funded by NWO.

Dr S.F.B. Tomassen | alfa
Further information:
http://www.nwo.nl/nwohome.nsf/pages/NWOP_6FRG9J_Eng

More articles from Life Sciences:

nachricht High-Speed Locomotion Neurons Found in the Brainstem
24.10.2017 | Universität Basel

nachricht Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise
24.10.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Salmonella as a tumour medication

HZI researchers developed a bacterial strain that can be used in cancer therapy

Salmonellae are dangerous pathogens that enter the body via contaminated food and can cause severe infections. But these bacteria are also known to target...

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Symposium on Driving Simulation

23.10.2017 | Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

 
Latest News

Single nanoparticle mapping paves the way for better nanotechnology

24.10.2017 | Physics and Astronomy

A quantum spin liquid

24.10.2017 | Physics and Astronomy

Antibiotic resistance: a strain of multidrug-resistant Escherichia coli is on the rise

24.10.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>