Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer advance

16.09.2005


A new family of genes could hold the key to winning the battle against breast cancer, according to new research at the University of East Anglia.



Cancer specialists at UEA have discovered that several ‘ADAMTS’ genes are turned off in breast cancer compared to normal breast tissue, while others are switched on. These genes could be targets for the development of ‘smart’ drugs tailored to treat individual patients’ tumours.

The ADAMTS genes are recent additions to a large family known as the metalloproteinases – many of which can break down tissues and have therefore been linked with tumour metastasis, or spread, through the body. However, the ADAMTS group had not previously been linked to the development of breast cancer. These new findings suggest they could become robust ‘markers’, predicting disease outcome in breast cancer patients and identifying those patients most at risk of recurrence of the disease.


Funded by Breast Cancer Campaign, the innovative three-year study has been undertaken by Dr Sarah Porter and Prof Dylan Edwards of UEA’s School of Biological Sciences, using tissue samples from patients at the Norfolk and Norwich University Hospital and a medical centre in Nijmegen in The Netherlands. The findings have just been published in the International Journal of Cancer.

“We are beginning to understand how genes contribute to breast cancer development and I am confident this work will ultimately prove valuable for both diagnosis and treatment of the disease,” said Prof Edwards.

Pamela Goldberg, Breast Cancer Campaign chief executive, said: “The spread of breast cancer around the body is the single most important factor in breast cancer mortality. The findings of this research will play a major role in improving the future of breast cancer treatment which will focus on drug regimes tailored to the individual patient.”

Earlier published work by Dr Porter and Prof Edwards showed that 11 of the 19 ADAMTS genes in humans are significantly altered as breast cancer develops. Their latest research now focuses on two of the genes, ADAMTS8 and ADAMTS15, and has shown that they can help to predict disease outcome in breast cancer patients. These new findings show that differing levels of activity of these genes means that patients can be grouped into one of four categories. These categories could be used to predict the likelihood of the breast cancer recurring. Those in the highest risk category are three times more likely to have a recurrence of breast cancer, and over five times more likely to die from the disease, than patients in the lowest risk category.

The UEA team hope that, in the future, clinicians will look at the levels of ADAMTS genes in a patient’s tumour and be able to prescribe the most effective therapy for treating the disease.

Simon Dunford | alfa
Further information:
http://www.uea.ac.uk

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>