Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer advance

16.09.2005


A new family of genes could hold the key to winning the battle against breast cancer, according to new research at the University of East Anglia.



Cancer specialists at UEA have discovered that several ‘ADAMTS’ genes are turned off in breast cancer compared to normal breast tissue, while others are switched on. These genes could be targets for the development of ‘smart’ drugs tailored to treat individual patients’ tumours.

The ADAMTS genes are recent additions to a large family known as the metalloproteinases – many of which can break down tissues and have therefore been linked with tumour metastasis, or spread, through the body. However, the ADAMTS group had not previously been linked to the development of breast cancer. These new findings suggest they could become robust ‘markers’, predicting disease outcome in breast cancer patients and identifying those patients most at risk of recurrence of the disease.


Funded by Breast Cancer Campaign, the innovative three-year study has been undertaken by Dr Sarah Porter and Prof Dylan Edwards of UEA’s School of Biological Sciences, using tissue samples from patients at the Norfolk and Norwich University Hospital and a medical centre in Nijmegen in The Netherlands. The findings have just been published in the International Journal of Cancer.

“We are beginning to understand how genes contribute to breast cancer development and I am confident this work will ultimately prove valuable for both diagnosis and treatment of the disease,” said Prof Edwards.

Pamela Goldberg, Breast Cancer Campaign chief executive, said: “The spread of breast cancer around the body is the single most important factor in breast cancer mortality. The findings of this research will play a major role in improving the future of breast cancer treatment which will focus on drug regimes tailored to the individual patient.”

Earlier published work by Dr Porter and Prof Edwards showed that 11 of the 19 ADAMTS genes in humans are significantly altered as breast cancer develops. Their latest research now focuses on two of the genes, ADAMTS8 and ADAMTS15, and has shown that they can help to predict disease outcome in breast cancer patients. These new findings show that differing levels of activity of these genes means that patients can be grouped into one of four categories. These categories could be used to predict the likelihood of the breast cancer recurring. Those in the highest risk category are three times more likely to have a recurrence of breast cancer, and over five times more likely to die from the disease, than patients in the lowest risk category.

The UEA team hope that, in the future, clinicians will look at the levels of ADAMTS genes in a patient’s tumour and be able to prescribe the most effective therapy for treating the disease.

Simon Dunford | alfa
Further information:
http://www.uea.ac.uk

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>