Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast cancer advance

16.09.2005


A new family of genes could hold the key to winning the battle against breast cancer, according to new research at the University of East Anglia.



Cancer specialists at UEA have discovered that several ‘ADAMTS’ genes are turned off in breast cancer compared to normal breast tissue, while others are switched on. These genes could be targets for the development of ‘smart’ drugs tailored to treat individual patients’ tumours.

The ADAMTS genes are recent additions to a large family known as the metalloproteinases – many of which can break down tissues and have therefore been linked with tumour metastasis, or spread, through the body. However, the ADAMTS group had not previously been linked to the development of breast cancer. These new findings suggest they could become robust ‘markers’, predicting disease outcome in breast cancer patients and identifying those patients most at risk of recurrence of the disease.


Funded by Breast Cancer Campaign, the innovative three-year study has been undertaken by Dr Sarah Porter and Prof Dylan Edwards of UEA’s School of Biological Sciences, using tissue samples from patients at the Norfolk and Norwich University Hospital and a medical centre in Nijmegen in The Netherlands. The findings have just been published in the International Journal of Cancer.

“We are beginning to understand how genes contribute to breast cancer development and I am confident this work will ultimately prove valuable for both diagnosis and treatment of the disease,” said Prof Edwards.

Pamela Goldberg, Breast Cancer Campaign chief executive, said: “The spread of breast cancer around the body is the single most important factor in breast cancer mortality. The findings of this research will play a major role in improving the future of breast cancer treatment which will focus on drug regimes tailored to the individual patient.”

Earlier published work by Dr Porter and Prof Edwards showed that 11 of the 19 ADAMTS genes in humans are significantly altered as breast cancer develops. Their latest research now focuses on two of the genes, ADAMTS8 and ADAMTS15, and has shown that they can help to predict disease outcome in breast cancer patients. These new findings show that differing levels of activity of these genes means that patients can be grouped into one of four categories. These categories could be used to predict the likelihood of the breast cancer recurring. Those in the highest risk category are three times more likely to have a recurrence of breast cancer, and over five times more likely to die from the disease, than patients in the lowest risk category.

The UEA team hope that, in the future, clinicians will look at the levels of ADAMTS genes in a patient’s tumour and be able to prescribe the most effective therapy for treating the disease.

Simon Dunford | alfa
Further information:
http://www.uea.ac.uk

More articles from Life Sciences:

nachricht Stiffness matters
22.02.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Separate brain systems cooperate during learning, study finds
22.02.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Stiffness matters

22.02.2018 | Life Sciences

Magnetic field traces gas and dust swirling around supermassive black hole

22.02.2018 | Physics and Astronomy

First evidence of surprising ocean warming around Galápagos corals

22.02.2018 | Earth Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>