Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Compounds found in cruciferous vegetables block lung cancer progression

15.09.2005


A family of compounds found in cruciferous vegetables, such as broccoli, cauliflower, and watercress, blocked lung cancer progression in both animal studies and in tests with human lung cancer cells, report researchers from Georgetown University Medical Center and the Institute for Cancer Prevention.



They say the results, published in a set of papers in the September 15 issue of Cancer Research, suggest that these chemicals -- put into a veggie pill of sorts -- might some day be used to help current and former smokers ward off development of lung cancer, the leading cause of cancer death in Americans.

"These studies provides significant insight into the mechanisms of lung cancer prevention and suggests ways the process can be slowed down after exposure has already occurred," said the study’s principal investigator Fung-Lung Chung, Ph.D., Professor of Oncology in the Lombardi Cancer Center at the Georgetown University Medical Center. He worked with researchers from the Institute for Cancer Prevention, in Valhalla, New York, and with other scientists in Illinois, Minnesota and New York on the studies.


"We still need to do more research, but it may be that an agent containing these ingredients could, to some degree, help protect people who have developed early lung lesions due to smoking," Chung said. "In any case, we know that eating vegetables is generally good for us, and that some studies have shown they help lower a person’s risk of developing cancer."

One of the two new studies being reported was the first to test whether these compounds, derived from naturally occurring isothiocyanates, could have an impact on the stages of cancer development specifically after exposure to cancer-causing elements . To test that, the researchers induced lung tumor development in experimental mice by exposing them to tobacco carcinogens, and then they fed one group of mice the veggie compounds. They found that, indeed, use of the chemicals resulted in a reduced development of benign (harmless) lung tumors to malignant tumors, compared to mice that did not receive the compound.

Chung cautions, however, that it is difficult to draw any direct comparisons between human consumption of these vegetables and the effects seen in the mice studies. "Because the amount of carcinogens we used to induce tumors was very high, we needed to use a very high dose of isothiocyanates to see any effect," he said. "This animal model will give us data for the potential use of such agents in a human clinical trial."

The second new study looked at the effect of the same compound on human lung cancer cells, which were forced to grow quickly (as cancer does) because of insertion of a gene known to be involved in cell growth and regulation. The laboratory test showed that the derivative of isothiocyanate significantly pushed the human lung cells to commit "suicide," compared to cells that did not have the gene, suggesting that its use may stop fast growing lung cancer cells from the outset. This study provides some insight onto "one of the possible mechanisms of action" by which the compounds may offer some protection against lung cancer development, the researchers said.

These studies were continuation of a 20-year research effort by Chung and his team, much of it conducted while Chung was at the Institute for Cancer Prevention before moving to Georgetown University Medical Center. The body of research they have established on the connection between cruciferous vegetables and lung cancer is one of the most detailed available. Chung earlier identified the isothiocyanates may be responsible for the beneficial effects of these vegetables, and he had shown they were effective in hindering development of lung cancer cells.

Cindy Fox Aisen | EurekAlert!
Further information:
http://www.georgetown.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>