Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


miRNAs and musculature


In an effort to understand the biological function of the microRNA mir1, Drs. Nicholas Sokol and Victor Ambros (Darmouth Medical School) have studied the expression profile, transcriptional regulation and loss-of-function phenotype of Drosophila mir-1 (Dmir-1). Mir-1 is an evolutionarily conserved miRNA, whose expression in mouse and humans is limited to heart and skeletal muscle. Strikingly, their study shows that, in Drosophila embryos, mir-1 expression is not required for mesodermal cell fate decisions or cell proliferation during embryogenesis, but rather, that it appears to act to reinforce and maintain cell identity during times of rapid growth.

The authors find that, as in zebrafish, mouse and humans, Dmir-1 is specifically expressed in muscle cells. Furthermore, they show that Dmir-1 expression is regulated by the promesodermal transcription factor Twist and the promyogenic transcription factor Mef2, thus placing Dmir-1 within established transcriptional networks in muscle. However, the authors find that muscles form normally in embryos in which expression of Dmir-1 has been ablated by gene targeting (Dmir-1 KO). A defect is only revealed when larval growth is initiated by feeding, which triggers paralysis and eventually death of Dmir-1 KO larvae.

Analysis of the mutant larvae after feeding reveals disrupted somatic musculature, strongly suggesting a role for Dmir-1 in the maintenance of muscle integrity and identity in times of stress induced by growth. Dr. Sokol proposes that "Mir-1 could function generally to maintain muscle cell identity by ensuring that mRNAs from promiscuously transcribed nonmuscle genes remain inactive." Their work adds to the emerging range of functions that miRNAs perform in an organism and advocates the study of loss-of-function mutations in miRNA genes as an essential tool for identifying the biological roles of miRNAs.

Heather Cosel | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht When fat cells change their colour
28.10.2016 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Aquaculture: Clear Water Thanks to Cork
28.10.2016 | Technologie Lizenz-Büro (TLB) der Baden-Württembergischen Hochschulen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel light sources made of 2D materials

Physicists from the University of Würzburg have designed a light source that emits photon pairs. Two-photon sources are particularly well suited for tap-proof data encryption. The experiment's key ingredients: a semiconductor crystal and some sticky tape.

So-called monolayers are at the heart of the research activities. These "super materials" (as the prestigious science magazine "Nature" puts it) have been...

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Prototype device for measuring graphene-based electromagnetic radiation created

28.10.2016 | Power and Electrical Engineering

Gamma ray camera offers new view on ultra-high energy electrons in plasma

28.10.2016 | Physics and Astronomy

When fat cells change their colour

28.10.2016 | Life Sciences

More VideoLinks >>>