Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Scavenger cells could be key to treating HIV-related dementia

15.09.2005


Understanding macrophages could lead to ways to prevent HIV-associated dementia



Bacteria-eating cells that generally fight infection may cause dementia in HIV patients, University of Florida and University of California at San Francisco researchers have found.

Macrophages, long-living white blood cells often considered the scavengers of the immune system, actually may damage a part of the brain where many memories are stored in their attempt to attack the virus there, according to findings reported in the Journal of Virology this month.


Researchers found that HIV-infected macrophages in the brain continuously travel to the temporal lobe, a part of the brain Alzheimer’s disease often damages. Because the virus mutates nearly 100 times faster in the temporal lobe than other parts of the brain, attacking macrophages migrate there in a constant stream, causing harmful inflammation.

Nearly 15 percent of HIV patients develop dementia as their disease progresses. But understanding the routes macrophage cells take in the brain could help researchers find ways to block the migration and prevent HIV-associated dementia, said Marco Salemi, Ph.D, a UF assistant professor of pathology and immunology and an author of the study.

"In a way, it’s not the virus that directly causes the dementia," Salemi said. "It’s the fact that there is this continuous migration of infected macrophages to the temporal lobe. The virus mutates much faster there, the macrophages keep accumulating and keep creating this inflammation that leads to dementia."

Macrophages also may explain why current drugs cannot kill the virus that causes AIDS.

Researchers have known for years how HIV replicates in T cells, also part of the immune system. But most are just beginning to understand how the virus affects macrophages, said Michael S. McGrath, M.D., Ph.D, a UCSF professor of pathology and laboratory medicine who co-authored the study.

"It’s likely the oldest (form of the) virus lives in a macrophage in the brain and most virus strains evolve from that," McGrath said. "Imagine having cells, already infected, that live as long as you do."

Current antiretroviral drugs block HIV from replicating in new T cells, but don’t kill the virus in infected macrophages. And the drugs cannot stop the virus from evolving into new forms, McGrath said. Because the virus mutates faster than other cells in the body, it also can develop resistance to these drugs, Salemi said.

Even the HIV already in an infected person’s brain is not one single virus, but rather populations of slightly different viruses that infect different parts of the brain, the findings show.

"We agree there are different strains that populate different regions of the brain," said Francisco Gonzalez-Scarano, M.D., chairman of the University of Pennsylvania neurology department. "We’ve done similar studies in monkeys."

To obtain their findings, the researchers studied different regions of the brain of a person who died with HIV-associated dementia using specimens from the AIDS and Cancer Specimen Resource at UCSF. They also used a new computer-based research tool to study the results. Dubbed phylodynamic analysis, this new method links traditional ways of studying the virus to give researchers a more comprehensive understanding, which Salemi says is crucial to analyzing the ever-changing disease.

"If we really want to understand what happens to a person infected with this disease, we need to develop new tools," he said. "We can put together all these different resources and describe how the virus changes over time and try to understand why this particular damage happens"

But these results are just a first step, Salemi said. The team is now analyzing brains from 10 people, some who died with HIV-associated dementia and others who did not.

The well-known cocktail of antiretroviral drugs prescribed to most HIV patients has cut the number of HIV-associated dementia cases reported each year, Gonzalez-Scarano said. However, this is because the drugs slow the progression of the disease, he said. Patients still have the same chance of developing dementia later, as the disease advances.

That’s one of the reasons why the researchers say developing drugs that target macrophages as well as T cells is important. These drugs could provide better treatments for dementia and potentially lead to a way to "eradicate HIV-1 infection," the study states.

"You can’t cure (HIV) with antiretroviral therapy (alone)," McGrath said.

April Frawley Birdwell | EurekAlert!
Further information:
http://www.health.ufl.edu

More articles from Life Sciences:

nachricht Programming cells with computer-like logic
27.07.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht Identified the component that allows a lethal bacteria to spread resistance to antibiotics
27.07.2017 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Physicists Design Ultrafocused Pulses

Physicists working with researcher Oriol Romero-Isart devised a new simple scheme to theoretically generate arbitrarily short and focused electromagnetic fields. This new tool could be used for precise sensing and in microscopy.

Microwaves, heat radiation, light and X-radiation are examples for electromagnetic waves. Many applications require to focus the electromagnetic fields to...

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

 
Latest News

Programming cells with computer-like logic

27.07.2017 | Life Sciences

Identified the component that allows a lethal bacteria to spread resistance to antibiotics

27.07.2017 | Life Sciences

Malaria Already Endemic in the Mediterranean by the Roman Period

27.07.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>