Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Breast Tumors in Mice Eradicated Using Cancer Vaccine

15.09.2005


Listeria inside a macrophage, an immune cell enlisted in the immune response. Credit: Paul Neeson, PhD, University of Pennsylvania School of Medicine


When bacteria such as Listeria and Salmonella are taken up into a phagocytic cell of the immune system, they are engulfed into a phagocytic vacuole in the interior of the cell. Here they may be destroyed and fragments of antigens they carry will eventually egress to the cell surface to activate CD4 immune cells, which are important in assisting in the immune response. Listeria, unlike other bacteria, has evolved to break out of the vacuole and survive inside the immune cell. This way antigens that Listeria carries are targeted to a pathway in the cytoplasm where they are broken into peptides and taken to the cell surface for recognition by killer T cells. These killer T cells seek out and destroy tumor cells displaying tumor-specific antigens. Credit: Yvonne Paterson, PhD, University of Pennsylvania School of Medicine


Findings Could Lead To New Immune Therapy for Breast Cancer

A team from the University of Pennsylvania School of Medicine has shown that by using a cancer vaccine based on the bacterium Listeria monocytogenes, they can cure mice with established breast tumors. Cancer vaccines, which are more properly described as immunotherapy, work by boosting an immune response against tumor-associated antigens. Using Listeria, the researchers, led by Yvonne Paterson, PhD, Professor of Microbiology, delivered the tumor-associated antigen HER-2/Neu to immune cells. HER-2/Neu is overexpressed in 20 to 40 percent of all breast cancers and also present in many cancers of the ovaries, lung, pancreas, and gastrointestinal tract. These cells eventually enlist killer T cells to seek out and destroy the tumor cells that display the HER-2/Neu molecule.

"We found that we can stop the tumor from growing out to 100 days, at which time we stopped measuring since this is a long time for experiments of this type," says Paterson. "The tumors stopped growing or went completely away." The researchers published their findings in the September 15 issue of The Journal of Immunology.



"The problem that we encounter is that often by the time a patient presents with cancer, they’ve developed immune tolerance to the tumor antigen, particularly when the antigen is expressed at low levels on normal tissue as with Her2/Neu," explains Paterson. "So how is the body to mount a strong enough immune reaction?"

In general, bacteria are good at inducing both innate and adaptive immune responses, activating such immune cells as macrophages, dendritic cells, and T cells. This helps jump-start the immune response to break tolerance.

But, why Listeria over other bacteria as a vehicle to deliver a tumor-associated antigen? Because of Listeria’s unusual life style. Normally, when bacteria get taken up into an antigen-presenting cell, they are engulfed by a phagocytic vacuole where they get killed-whereupon their proteins get broken down into smaller pieces (peptides) and attached to MHC Class 2 molecules. These egress to the cell surface, where they expand and activate helper T cells, which are enlisted into the immune response.

But Listeria has evolved to escape from this vacuole and survive inside the cytosol of antigen-presenting cells, where it can replicate and grow, unlike other bacteria. So, although some of the bacteria are destroyed in the vacuole that feeds the MHC class II pathway of antigen presentation with the induction of helper T cells, others survive by escaping into the cytosol of the cell. This is important because the antigen-processing pathway that feeds antigenic peptides to the surface of the cell for recognition by killer T cells is generated in this cellular compartment. "We reasoned that if we could get Listeria to secrete a foreign protein into the interior of the cell, it would target that pathway and would elicit a strong killer T cell response, and we have shown that," says Paterson. "Listeria is almost unique in the bacterial kingdom in doing this."

In this model, pieces of the very large HER-2/Neu molecule are broken up into little fragments and bound to the MHC Class 1 molecule within the antigen-presenting cell. This is what the killer T cell "sees" at the cell surface. These killer T cells, which are being produced in the spleen, where Listeria usually colonizes, seek out and destroy the tumor. This system ensures an increase in the production of killer T cells that can recognize the HER-2/Neu pieces on the surface of the tumor cell. In addition, the Penn team helped the immune system along by fusing the tumor antigen to a bacterial protein that seems to activate antigen-presenting cells. They have found that by doing this the immune system now recognizes regions of the HER-2/neu molecule that are not immunogenic when presented by other vaccine approaches.

Paterson first hit on the idea of using Listeria as a cancer vaccine vector over ten years ago. "It took a while to dissect what elements of an immune response were best able to cause the rejection of established tumors," she says. "But in the last couple of years it has paid off and we are very excited to see the technology finally being tested in cancer patients. The dream of the cancer immunotherapist is to provide an alternative and more humane way of controlling metastatic disease than current chemotherapies."

The Listeria vector is currently being prepared for a clinical trial targeting a tumor antigen associated with cervical cancer by Advaxis Inc., a cancer vaccine biotech company that has licensed Penn patents on the use of Listeria monocytogenes as a vaccine vector. Paterson is the scientific founder of Advaxis and Chair of the Scientific Advisory Board. The successful demonstration that the Listeria vector technology can also be used with the HER-2/neu molecule paves the way for applying this promising cancer vaccine approach to breast cancer.

This research was funded by the Department of Defense and the National Cancer Institute. Co-authors are Reshma Singh and Mary E. Dominiecki, both from Penn, as well as Elizabeth M. Jaffee from the Johns Hopkins University School of Medicine.

Karen Kreeger | EurekAlert!
Further information:
http://www.uphs.upenn.edu

More articles from Life Sciences:

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

nachricht UK chemistry researchers develop catalyst that mimics the z-scheme of photosynthesis
26.06.2017 | University of Kentucky

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

New 3-D model predicts best planting practices for farmers

26.06.2017 | Agricultural and Forestry Science

New research reveals impact of seismic surveys on zooplankton

26.06.2017 | Life Sciences

Correct connections are crucial

26.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>