Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding Complexity of p53

15.09.2005


Researchers at the University of Dundee have discovered new levels of complexity in the regulation of the tumour suppressor gene p53, findings which could have a significant impact on the identification of patients at risk of developing aggressive cancer and in determining more efficient drug treatments.



The research has been led by Professor Sir David Lane and Dr Jean-Christophe Bourdon of the Cancer Research UK Cell Transformation Group at the University of Dundee. Prof Lane famously discovered the p53 protein, and continues to lead cutting edge research in this field.

The new findings, which are to be published on the 15 September in the journal, "Genes and Development", show that the p53 gene, the most frequently inactivated gene in human cancer, does not produce only one unique p53 protein as previously thought, but at least six different p53 proteins (isoforms). They also established that expression of p53 isoforms is abnormal in breast tumours.


"The discovery of p53 isoforms is a major breakthrough in the understanding of cancer formation," said Dr Bourdon.

"The determination of p53 isoform expression in human cancers will help to identify patients at risk of developing aggressive cancer and to define their drug sensitivity in order to treat the patient with the most efficient drugs."

"The deregulation of p53 isoform expression in tumours provides an explanation on how tumours can develop while they express a non-mutated p53 gene. As p53 isoforms are abnormally expressed in tumour cells, p53 is not fully active and does not destroy every cell which leads to cancer formation."

The different isoforms of p53 contain sections of the normal p53 protein, each put together in a slightly different way. All six isoforms can be found in normal human cells, though their levels vary in different tissues. Some of these isoforms can interact with full-length p53 to affect its tumour suppressing activity, suggesting that interactions between the different protein isoforms may be key in regulating p53’s normal role.

p53 activity is lost in over half of human tumours, which emphasises the importance of the p53 protein in preventing tumour formation. However, one of the puzzles facing workers in the p53 field is the role of p53 in tumours where it remains apparently normal.

Dr Bourdon and Prof Lane have examined the levels of these newly discovered p53 isoforms in breast tumours and find that some isoforms are present at abnormal levels in tumours which have otherwise normal p53.

This suggests that, in these tumours, p53 activity is being lost by altered isoform expression, rather than by mutation of the p53 gene itself. This important new finding tells us that alterations in levels of specific isoforms may play an essential role in tumour formation by regulating p53 activity. This new model will help to explain how p53 function in individual tumours is linked to the sensitivity of that tumour to drug treatment and give us new tools in the treatment of breast and other cancers.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prsept05/p53.html
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>