Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Expanding Complexity of p53

15.09.2005


Researchers at the University of Dundee have discovered new levels of complexity in the regulation of the tumour suppressor gene p53, findings which could have a significant impact on the identification of patients at risk of developing aggressive cancer and in determining more efficient drug treatments.



The research has been led by Professor Sir David Lane and Dr Jean-Christophe Bourdon of the Cancer Research UK Cell Transformation Group at the University of Dundee. Prof Lane famously discovered the p53 protein, and continues to lead cutting edge research in this field.

The new findings, which are to be published on the 15 September in the journal, "Genes and Development", show that the p53 gene, the most frequently inactivated gene in human cancer, does not produce only one unique p53 protein as previously thought, but at least six different p53 proteins (isoforms). They also established that expression of p53 isoforms is abnormal in breast tumours.


"The discovery of p53 isoforms is a major breakthrough in the understanding of cancer formation," said Dr Bourdon.

"The determination of p53 isoform expression in human cancers will help to identify patients at risk of developing aggressive cancer and to define their drug sensitivity in order to treat the patient with the most efficient drugs."

"The deregulation of p53 isoform expression in tumours provides an explanation on how tumours can develop while they express a non-mutated p53 gene. As p53 isoforms are abnormally expressed in tumour cells, p53 is not fully active and does not destroy every cell which leads to cancer formation."

The different isoforms of p53 contain sections of the normal p53 protein, each put together in a slightly different way. All six isoforms can be found in normal human cells, though their levels vary in different tissues. Some of these isoforms can interact with full-length p53 to affect its tumour suppressing activity, suggesting that interactions between the different protein isoforms may be key in regulating p53’s normal role.

p53 activity is lost in over half of human tumours, which emphasises the importance of the p53 protein in preventing tumour formation. However, one of the puzzles facing workers in the p53 field is the role of p53 in tumours where it remains apparently normal.

Dr Bourdon and Prof Lane have examined the levels of these newly discovered p53 isoforms in breast tumours and find that some isoforms are present at abnormal levels in tumours which have otherwise normal p53.

This suggests that, in these tumours, p53 activity is being lost by altered isoform expression, rather than by mutation of the p53 gene itself. This important new finding tells us that alterations in levels of specific isoforms may play an essential role in tumour formation by regulating p53 activity. This new model will help to explain how p53 function in individual tumours is linked to the sensitivity of that tumour to drug treatment and give us new tools in the treatment of breast and other cancers.

Roddy Isles | alfa
Further information:
http://www.dundee.ac.uk/pressreleases/prsept05/p53.html
http://www.dundee.ac.uk

More articles from Life Sciences:

nachricht Molecular evolution: How the building blocks of life may form in space
26.04.2018 | American Institute of Physics

nachricht Multifunctional bacterial microswimmer able to deliver cargo and destroy itself
26.04.2018 | Max-Planck-Institut für Intelligente Systeme

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Why we need erasable MRI scans

New technology could allow an MRI contrast agent to 'blink off,' helping doctors diagnose disease

Magnetic resonance imaging, or MRI, is a widely used medical tool for taking pictures of the insides of our body. One way to make MRI scans easier to read is...

Im Focus: BAM@Hannover Messe: innovative 3D printing method for space flight

At the Hannover Messe 2018, the Bundesanstalt für Materialforschung und-prüfung (BAM) will show how, in the future, astronauts could produce their own tools or spare parts in zero gravity using 3D printing. This will reduce, weight and transport costs for space missions. Visitors can experience the innovative additive manufacturing process live at the fair.

Powder-based additive manufacturing in zero gravity is the name of the project in which a component is produced by applying metallic powder layers and then...

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

World's smallest optical implantable biodevice

26.04.2018 | Power and Electrical Engineering

Molecular evolution: How the building blocks of life may form in space

26.04.2018 | Life Sciences

First Li-Fi-product with technology from Fraunhofer HHI launched in Japan

26.04.2018 | Power and Electrical Engineering

VideoLinks
Science & Research
Overview of more VideoLinks >>>