Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart bomb for cancer therapy

15.09.2005


A new system for directing radiation to target cells has been developed in Melbourne, Australia. The new targeting system has the potential to specifically destroy cancer cells with minimal damage to healthy tissues.



Tom Karagiannis is a research officer from the Peter MacCallum Cancer Centre where the system was devised. Tom has been selected for Fresh Science, a national competition where early-career researchers present their work to the public for the first time.

One of the Fresh Scientists will win a trip to the UK courtesy of the British Council and present their work at the Royal Institution.


The new cancer targeting concept, for which an international patent is pending, uses a special class of radioactive atoms for which the radiation damage is confined to the molecules immediately adjacent to the radioactive atom.

The cell-killing effect is maximised by directing the radiation to the genetic material (DNA) of the target cell, with little effect on neighbouring cells.

“We expect that our targeting system will be particularly useful for small clusters of cancer cells, such as those that spread throughout the body when a cancer becomes more advanced,” says Dr Karagiannis.

Conventional cancer therapies such as surgery, radiotherapy and chemotherapy have resulted in a steady decline in cancer mortality rates over the years.

Only chemotherapy has the potential to be effective when the cancer has spread throughout the body, but often it is not effective.

Latest figures from the World Health Organization show that about 50 percent of cancer patients still die in developed countries and about 80 percent die in developing countries.

A unique feature of the cancer targeting system is the highly focussed damage caused by the radioactive isotopes used - most of the radiation damage is within a distance of only a few millionths of a millimetre. This means they can kill cancer cells without causing significant damage to normal cells.

The new technology combines knowledge from a wide range of scientific disciplines, including radiation biology, chemistry and immunology, Dr Karagiannis says.

The key ingredient is a complex composite drug, made by attaching the radioactive atom to a DNA-binding molecule, which in turn is linked to a cancer-targeting protein such as an antibody.

“Our radiolabelled DNA-binding drug alone provided a very efficient ‘molecular bomb’ for destroying cells,” says Dr Karagiannis. “But it could not discriminate between cancer cells and healthy cells.”

To make a ‘smarter’ drug, researchers took advantage of the fact that many cancer cells express high levels of certain proteins on their cell surface. Antibodies that bind specifically to these surface proteins were used as vehicles to target the lethal damage to cancer cells.

“Our strategy builds on the growing interest in antibodies as cancer therapeutics,” says Associate Professor Roger Martin, Tom’s supervisor who has been working on the project concept for the past three decades.

“There are a currently only a handful of such anticancer-antibodies that have been approved for therapy and many others that are in clinical trials.”

Proof-of-principle studies with the new targeting system have yielded very promising results with cell cultures, but a commercial partner is required for further development.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/tomkaragiannis/tomkaragiannis.htm

More articles from Life Sciences:

nachricht Making fuel out of thick air
08.12.2017 | DOE/Argonne National Laboratory

nachricht ‘Spying’ on the hidden geometry of complex networks through machine intelligence
08.12.2017 | Technische Universität Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

Im Focus: Virtual Reality for Bacteria

An interdisciplinary group of researchers interfaced individual bacteria with a computer to build a hybrid bio-digital circuit - Study published in Nature Communications

Scientists at the Institute of Science and Technology Austria (IST Austria) have managed to control the behavior of individual bacteria by connecting them to a...

Im Focus: A space-time sensor for light-matter interactions

Physicists in the Laboratory for Attosecond Physics (run jointly by LMU Munich and the Max Planck Institute for Quantum Optics) have developed an attosecond electron microscope that allows them to visualize the dispersion of light in time and space, and observe the motions of electrons in atoms.

The most basic of all physical interactions in nature is that between light and matter. This interaction takes place in attosecond times (i.e. billionths of a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Midwife and signpost for photons

11.12.2017 | Physics and Astronomy

How do megacities impact coastal seas? Searching for evidence in Chinese marginal seas

11.12.2017 | Earth Sciences

PhoxTroT: Optical Interconnect Technologies Revolutionized Data Centers and HPC Systems

11.12.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>