Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart bomb for cancer therapy

15.09.2005


A new system for directing radiation to target cells has been developed in Melbourne, Australia. The new targeting system has the potential to specifically destroy cancer cells with minimal damage to healthy tissues.



Tom Karagiannis is a research officer from the Peter MacCallum Cancer Centre where the system was devised. Tom has been selected for Fresh Science, a national competition where early-career researchers present their work to the public for the first time.

One of the Fresh Scientists will win a trip to the UK courtesy of the British Council and present their work at the Royal Institution.


The new cancer targeting concept, for which an international patent is pending, uses a special class of radioactive atoms for which the radiation damage is confined to the molecules immediately adjacent to the radioactive atom.

The cell-killing effect is maximised by directing the radiation to the genetic material (DNA) of the target cell, with little effect on neighbouring cells.

“We expect that our targeting system will be particularly useful for small clusters of cancer cells, such as those that spread throughout the body when a cancer becomes more advanced,” says Dr Karagiannis.

Conventional cancer therapies such as surgery, radiotherapy and chemotherapy have resulted in a steady decline in cancer mortality rates over the years.

Only chemotherapy has the potential to be effective when the cancer has spread throughout the body, but often it is not effective.

Latest figures from the World Health Organization show that about 50 percent of cancer patients still die in developed countries and about 80 percent die in developing countries.

A unique feature of the cancer targeting system is the highly focussed damage caused by the radioactive isotopes used - most of the radiation damage is within a distance of only a few millionths of a millimetre. This means they can kill cancer cells without causing significant damage to normal cells.

The new technology combines knowledge from a wide range of scientific disciplines, including radiation biology, chemistry and immunology, Dr Karagiannis says.

The key ingredient is a complex composite drug, made by attaching the radioactive atom to a DNA-binding molecule, which in turn is linked to a cancer-targeting protein such as an antibody.

“Our radiolabelled DNA-binding drug alone provided a very efficient ‘molecular bomb’ for destroying cells,” says Dr Karagiannis. “But it could not discriminate between cancer cells and healthy cells.”

To make a ‘smarter’ drug, researchers took advantage of the fact that many cancer cells express high levels of certain proteins on their cell surface. Antibodies that bind specifically to these surface proteins were used as vehicles to target the lethal damage to cancer cells.

“Our strategy builds on the growing interest in antibodies as cancer therapeutics,” says Associate Professor Roger Martin, Tom’s supervisor who has been working on the project concept for the past three decades.

“There are a currently only a handful of such anticancer-antibodies that have been approved for therapy and many others that are in clinical trials.”

Proof-of-principle studies with the new targeting system have yielded very promising results with cell cultures, but a commercial partner is required for further development.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/tomkaragiannis/tomkaragiannis.htm

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>