Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart bomb for cancer therapy

15.09.2005


A new system for directing radiation to target cells has been developed in Melbourne, Australia. The new targeting system has the potential to specifically destroy cancer cells with minimal damage to healthy tissues.



Tom Karagiannis is a research officer from the Peter MacCallum Cancer Centre where the system was devised. Tom has been selected for Fresh Science, a national competition where early-career researchers present their work to the public for the first time.

One of the Fresh Scientists will win a trip to the UK courtesy of the British Council and present their work at the Royal Institution.


The new cancer targeting concept, for which an international patent is pending, uses a special class of radioactive atoms for which the radiation damage is confined to the molecules immediately adjacent to the radioactive atom.

The cell-killing effect is maximised by directing the radiation to the genetic material (DNA) of the target cell, with little effect on neighbouring cells.

“We expect that our targeting system will be particularly useful for small clusters of cancer cells, such as those that spread throughout the body when a cancer becomes more advanced,” says Dr Karagiannis.

Conventional cancer therapies such as surgery, radiotherapy and chemotherapy have resulted in a steady decline in cancer mortality rates over the years.

Only chemotherapy has the potential to be effective when the cancer has spread throughout the body, but often it is not effective.

Latest figures from the World Health Organization show that about 50 percent of cancer patients still die in developed countries and about 80 percent die in developing countries.

A unique feature of the cancer targeting system is the highly focussed damage caused by the radioactive isotopes used - most of the radiation damage is within a distance of only a few millionths of a millimetre. This means they can kill cancer cells without causing significant damage to normal cells.

The new technology combines knowledge from a wide range of scientific disciplines, including radiation biology, chemistry and immunology, Dr Karagiannis says.

The key ingredient is a complex composite drug, made by attaching the radioactive atom to a DNA-binding molecule, which in turn is linked to a cancer-targeting protein such as an antibody.

“Our radiolabelled DNA-binding drug alone provided a very efficient ‘molecular bomb’ for destroying cells,” says Dr Karagiannis. “But it could not discriminate between cancer cells and healthy cells.”

To make a ‘smarter’ drug, researchers took advantage of the fact that many cancer cells express high levels of certain proteins on their cell surface. Antibodies that bind specifically to these surface proteins were used as vehicles to target the lethal damage to cancer cells.

“Our strategy builds on the growing interest in antibodies as cancer therapeutics,” says Associate Professor Roger Martin, Tom’s supervisor who has been working on the project concept for the past three decades.

“There are a currently only a handful of such anticancer-antibodies that have been approved for therapy and many others that are in clinical trials.”

Proof-of-principle studies with the new targeting system have yielded very promising results with cell cultures, but a commercial partner is required for further development.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/tomkaragiannis/tomkaragiannis.htm

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Research reveals how order first appears in liquid crystals

23.05.2018 | Life Sciences

Space-like gravity weakens biochemical signals in muscle formation

23.05.2018 | Life Sciences

NIST puts the optical microscope under the microscope to achieve atomic accuracy

23.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>