Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smart bomb for cancer therapy

15.09.2005


A new system for directing radiation to target cells has been developed in Melbourne, Australia. The new targeting system has the potential to specifically destroy cancer cells with minimal damage to healthy tissues.



Tom Karagiannis is a research officer from the Peter MacCallum Cancer Centre where the system was devised. Tom has been selected for Fresh Science, a national competition where early-career researchers present their work to the public for the first time.

One of the Fresh Scientists will win a trip to the UK courtesy of the British Council and present their work at the Royal Institution.


The new cancer targeting concept, for which an international patent is pending, uses a special class of radioactive atoms for which the radiation damage is confined to the molecules immediately adjacent to the radioactive atom.

The cell-killing effect is maximised by directing the radiation to the genetic material (DNA) of the target cell, with little effect on neighbouring cells.

“We expect that our targeting system will be particularly useful for small clusters of cancer cells, such as those that spread throughout the body when a cancer becomes more advanced,” says Dr Karagiannis.

Conventional cancer therapies such as surgery, radiotherapy and chemotherapy have resulted in a steady decline in cancer mortality rates over the years.

Only chemotherapy has the potential to be effective when the cancer has spread throughout the body, but often it is not effective.

Latest figures from the World Health Organization show that about 50 percent of cancer patients still die in developed countries and about 80 percent die in developing countries.

A unique feature of the cancer targeting system is the highly focussed damage caused by the radioactive isotopes used - most of the radiation damage is within a distance of only a few millionths of a millimetre. This means they can kill cancer cells without causing significant damage to normal cells.

The new technology combines knowledge from a wide range of scientific disciplines, including radiation biology, chemistry and immunology, Dr Karagiannis says.

The key ingredient is a complex composite drug, made by attaching the radioactive atom to a DNA-binding molecule, which in turn is linked to a cancer-targeting protein such as an antibody.

“Our radiolabelled DNA-binding drug alone provided a very efficient ‘molecular bomb’ for destroying cells,” says Dr Karagiannis. “But it could not discriminate between cancer cells and healthy cells.”

To make a ‘smarter’ drug, researchers took advantage of the fact that many cancer cells express high levels of certain proteins on their cell surface. Antibodies that bind specifically to these surface proteins were used as vehicles to target the lethal damage to cancer cells.

“Our strategy builds on the growing interest in antibodies as cancer therapeutics,” says Associate Professor Roger Martin, Tom’s supervisor who has been working on the project concept for the past three decades.

“There are a currently only a handful of such anticancer-antibodies that have been approved for therapy and many others that are in clinical trials.”

Proof-of-principle studies with the new targeting system have yielded very promising results with cell cultures, but a commercial partner is required for further development.

Niall Byrne | alfa
Further information:
http://www.scienceinpublic.com/sciencenow/2005/tomkaragiannis/tomkaragiannis.htm

More articles from Life Sciences:

nachricht A novel socio-ecological approach helps identifying suitable wolf habitats
17.02.2017 | Universität Zürich

nachricht New, ultra-flexible probes form reliable, scar-free integration with the brain
16.02.2017 | University of Texas at Austin

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Biocompatible 3-D tracking system has potential to improve robot-assisted surgery

17.02.2017 | Medical Engineering

Real-time MRI analysis powered by supercomputers

17.02.2017 | Medical Engineering

Antibiotic effective against drug-resistant bacteria in pediatric skin infections

17.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>