Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists make major finding on potential smallpox treatment

14.09.2005


Research could lead to treatment that would help stop a smallpox outbreak



Researchers at the La Jolla Institute for Allergy & Immunology (LIAI) have made a major advancement toward protecting society against a smallpox outbreak by identifying an antibody in humans that quickly fights the smallpox virus.

"This is a very important finding because it has the potential to be an effective treatment for smallpox in humans and therefore could help quickly stop a smallpox outbreak," said Mitchell Kronenberg, Ph.D, LIAI President. The finding is contained in a paper entitled "Vaccinia H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice" that was published in the September issue of the Journal of Virology. LIAI scientist Shane Crotty, Ph.D., a viral disease expert, led the team of LIAI scientists which made the finding. Dr. D. Huw Davies and Dr. Phil Felgner of the University of California, Irvine Center for Vaccine Research were also major contributors.


Dr. Crotty and his team have discovered a protein in the smallpox virus – the H3 protein -- that elicits a particularly strong human antibody response. "Out of the 200 or so proteins contained in the smallpox virus, we found that the H3 protein is a major target for antibodies that kill the virus," he said. No actual smallpox virus was used in the studies in order to avoid any potential danger of transmission.

Dr. Crotty made the findings by studying blood samples from people who had received the smallpox vaccine. "We used new techniques that we developed that made it easier to identify and isolate antibodies from the blood of immunized humans. Then we carefully screened for the antibodies that fight the smallpox virus," he said. The researchers then tested their findings by creating a batch of the anti-H3 protein antibodies, which they injected into mice. "We were able to protect them from a strain of vaccinia pox virus that is very similar to smallpox and which is lethal to mice."

The National Institutes of Health is now funding further research by Dr. Crotty to better understand the molecular processes surrounding the finding. He said one focus of the research will be to fully develop anti-H3 antibodies in the lab that can be given to humans. "We’ll be working to further characterize and develop the use of this antibody as a treatment for smallpox," Dr. Crotty said.

The smallpox virus has been the subject of intense research interest worldwide in the last several years, prompted by bioterrorism concerns. The virus was eradicated in the U.S. by 1950 and vaccinations for the general public were ended in 1972. But in the aftermath of 9-11, new concerns have arisen that the smallpox virus could be used as a bioterrorist agent. Disease experts fear that samples of the smallpox virus may have fallen into the hands of terrorists at some point. This concern has led to the creation of worldwide stockpiles of the smallpox vaccine over the last several years.

Kronenberg said that if further study continues to validate the safety and effectiveness of Dr. Crotty’s finding, "we may one day see high-quality batches of anti-H3 antibody stockpiled around the world right along side the supplies of smallpox vaccine.

"While we do have a smallpox vaccine, there are concerns because people who are immuno-compromised cannot use the current vaccine," he added, "including infants and the aged." Additionally, if there were a smallpox outbreak, there would be a certain time lapse before all people who have not been inoculated could receive the vaccine. Unlike the vaccine, the antibody would work to provide immediate, although short-term protection, similar to how an antibiotic treats and for a short time protects against a bacterial infection.

"This makes Dr. Crotty’s research even more interesting because his findings appear to offer a way to successfully treat the virus," Kronenberg said. "This could be very important should people become infected before they have a chance to be vaccinated."

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>