Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

LIAI scientists make major finding on potential smallpox treatment

14.09.2005


Research could lead to treatment that would help stop a smallpox outbreak



Researchers at the La Jolla Institute for Allergy & Immunology (LIAI) have made a major advancement toward protecting society against a smallpox outbreak by identifying an antibody in humans that quickly fights the smallpox virus.

"This is a very important finding because it has the potential to be an effective treatment for smallpox in humans and therefore could help quickly stop a smallpox outbreak," said Mitchell Kronenberg, Ph.D, LIAI President. The finding is contained in a paper entitled "Vaccinia H3L envelope protein is a major target of neutralizing antibodies in humans and elicits protection against lethal challenge in mice" that was published in the September issue of the Journal of Virology. LIAI scientist Shane Crotty, Ph.D., a viral disease expert, led the team of LIAI scientists which made the finding. Dr. D. Huw Davies and Dr. Phil Felgner of the University of California, Irvine Center for Vaccine Research were also major contributors.


Dr. Crotty and his team have discovered a protein in the smallpox virus – the H3 protein -- that elicits a particularly strong human antibody response. "Out of the 200 or so proteins contained in the smallpox virus, we found that the H3 protein is a major target for antibodies that kill the virus," he said. No actual smallpox virus was used in the studies in order to avoid any potential danger of transmission.

Dr. Crotty made the findings by studying blood samples from people who had received the smallpox vaccine. "We used new techniques that we developed that made it easier to identify and isolate antibodies from the blood of immunized humans. Then we carefully screened for the antibodies that fight the smallpox virus," he said. The researchers then tested their findings by creating a batch of the anti-H3 protein antibodies, which they injected into mice. "We were able to protect them from a strain of vaccinia pox virus that is very similar to smallpox and which is lethal to mice."

The National Institutes of Health is now funding further research by Dr. Crotty to better understand the molecular processes surrounding the finding. He said one focus of the research will be to fully develop anti-H3 antibodies in the lab that can be given to humans. "We’ll be working to further characterize and develop the use of this antibody as a treatment for smallpox," Dr. Crotty said.

The smallpox virus has been the subject of intense research interest worldwide in the last several years, prompted by bioterrorism concerns. The virus was eradicated in the U.S. by 1950 and vaccinations for the general public were ended in 1972. But in the aftermath of 9-11, new concerns have arisen that the smallpox virus could be used as a bioterrorist agent. Disease experts fear that samples of the smallpox virus may have fallen into the hands of terrorists at some point. This concern has led to the creation of worldwide stockpiles of the smallpox vaccine over the last several years.

Kronenberg said that if further study continues to validate the safety and effectiveness of Dr. Crotty’s finding, "we may one day see high-quality batches of anti-H3 antibody stockpiled around the world right along side the supplies of smallpox vaccine.

"While we do have a smallpox vaccine, there are concerns because people who are immuno-compromised cannot use the current vaccine," he added, "including infants and the aged." Additionally, if there were a smallpox outbreak, there would be a certain time lapse before all people who have not been inoculated could receive the vaccine. Unlike the vaccine, the antibody would work to provide immediate, although short-term protection, similar to how an antibiotic treats and for a short time protects against a bacterial infection.

"This makes Dr. Crotty’s research even more interesting because his findings appear to offer a way to successfully treat the virus," Kronenberg said. "This could be very important should people become infected before they have a chance to be vaccinated."

Bonnie Ward | EurekAlert!
Further information:
http://www.liai.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>