Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Chemical imbalance may explain painkiller’s cardiac danger

14.09.2005


The increased rate of cardiovascular complications in patients taking the cox-2 inhibitor painkiller rofecoxib (Vioxx) may result from a chemical imbalance, according to an animal study in the September Cell Metabolism. The findings suggest that low-dose aspirin might prevent the cardiac damage of such drugs and might also lead to the development of new anti-inflammatory drugs without the adverse side effects, the researchers said.



Earlier studies in humans have found that cox-2 inhibitors cause a decline in prostacyclin, a chemical that normally keeps blood vessels open and prevents blood clots. That drop occurs without a change in concentration of thromboxane, a related agent that constricts vessels and promotes clot formation.

The new study by researchers at Duke University and Durham VA Medical Centers found that, in mice prone to high blood pressure, an inability to respond to prostacyclin led to cardiac complications, including hypertension, enlarged hearts and severe scarring of the heart. Moreover, they showed, unrestrained action of thromboxane in the absence of prostacyclin accentuated the intensity of cardiac damage caused by the high blood pressure.


"The current results suggest that such a chemical imbalance in patients taking selective cox-2 inhibitor painkillers may present a cardiovascular hazard--particularly for people already predisposed to high blood pressure," said study author Thomas Coffman.

"Hypertension is the most common cardiovascular complication associated with cox-2 inhibition, yet not everybody who takes the drugs develops high blood pressure," he continued. "The mice appear to have characteristics similar to the subset of patients who are prone to experience this side effect."

Cox-2 inhibitors and other nonsteroidal, anti-inflammatory drugs (NSAIDs)--including aspirin and ibuprofen--all reduce inflammation and pain by blocking the function of cyclo-oxygenases, also known as cox enzymes. The cox enzymes, cox-1 and cox-2, normally produce prostanoids--a family of related chemicals, including prostaglandins and thromboxanes, with many important functions throughout the body.

Prostaglandins produced by both enzymes promote inflammation, pain, and fever, while others made by cox-1 protect the stomach from the damaging effects of acid. The cox-1 and cox-2 enzymes, respectively, also produce thromboxane and prostacyclin.

Traditional NSAIDs relieve pain and inflammation by simultaneously blocking the function of both cox enzymes, Coffman explained. In contrast, rofecoxib and other cox-2 inhibitors selectively limit cox-2, thereby avoiding the gastrointestinal complications of over-the-counter NSAIDs.

A 2004 study, however, found an early rise in blood pressure and an increased rate of heart attack and stroke in patients treated with rofecoxib for more than 18 months. Last year, the manufacturer withdrew the drug from the market.

The current findings may lead to new drugs that avoid the pitfalls of both traditional NSAIDs and existing cox-2 inhibitors, the researchers said.

"Ultimately, through the dissection of these intricate pathways, it may be possible to identify drugs that provide all the therapeutic effects of NSAIDs and cox-2-selective inhibitors but lack their adverse side effects," added Matthew Breyer of Vanderbilt University Medical School in an accompanying preview. "Until that time, one can only marvel at the combination of therapeutic and cardioprotective effects of nature’s own compound, salicylate, and its chemically modified derivative, aspirin."

Heidi Hardman | EurekAlert!
Further information:
http://www.cellmetabolism.org

More articles from Life Sciences:

nachricht Study shines light on brain cells that coordinate movement
26.06.2017 | University of Washington Health Sciences/UW Medicine

nachricht New insight into a central biological dogma on ion transport
26.06.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Study shines light on brain cells that coordinate movement

26.06.2017 | Life Sciences

Smooth propagation of spin waves using gold

26.06.2017 | Physics and Astronomy

Switchable DNA mini-machines store information

26.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>