Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides first whole genome map of genetic variability in Parkinson’s disease

13.09.2005


Findings highlight 12 potential ’susceptibility’ genes

Mayo Clinic researchers in collaboration with scientists at Perlegen Sciences, Inc. and funded by the Michael J. Fox Foundation for Parkinson’s Research have produced the first large-scale whole genome map of genetic variability associated with Parkinson’s disease. Their results highlight changes in 12 genes that may increase the risk for Parkinson’s disease in some people. Parkinson’s disease is a disabling and currently incurable disease that affects millions of people worldwide.

Mayo Clinic and Perlegen Sciences will report their findings in The American Journal of Human Genetics. The paper was published online Friday, Sept. 9 (www.ajhg.org) and will appear in the November 2005 print issue.



"This represents one of the first large-scale whole genome association studies of any disease," said the study’s first author, Mayo Clinic neurologist Demetrius Maraganore, M.D. "It is something we’ve wanted to do for years, and now we finally had the technology and funding to make it happen. If confirmed, the findings may lead to new insights about the causes of Parkinson’s disease."

Significance of the Findings

Both the findings and the technology that produced them are groundbreaking, representing one of the most comprehensive genetic studies of Parkinson’s disease to date with nearly 200 million genetic tests (genotypes) completed. To accomplish this, researchers initially studied the association of about 200,000 single-letter variations in the genome known as single nucleotide polymorphisms, or "SNPs" (pronounced "snips") in patients with Parkinson’s disease. The study examined DNA from 775 people with Parkinson’s disease (cases) and from 775 people without Parkinson’s disease (controls).

"To be most effective, a whole genome association study requires accurate testing of a large number of SNP markers that are distributed across the human genome in a dense and informative pattern," says Dr. Maraganore. "In this respect, our collaborators at Perlegen have set a new standard."

"In one year, the Michael J. Fox Foundation and Mayo Clinic have generated results that will greatly focus future research efforts in Parkinson’s disease," explained David Cox, M.D., Ph.D., chief scientific officer of Perlegen Sciences. "If replication of only one of these findings leads to a better understanding of the causes of the disease or improvements in the early detection or treatment of patients, we will have made significant progress."

Noteworthy findings include:

  • Confirmation that variation in two previously known regions of the genome, PARK10 and PARK11, are likely associated with Parkinson’s disease susceptibility.
  • Identification of 10 additional SNPs that appear to be associated with Parkinson’s disease susceptibility. Some of these are in or near genes with direct biological relevance to the disease. For instance, one of these, the SEMA5A gene, may play an important role in both the development and programmed death of dopamine-producing nerve cells in the brain. Selective degeneration of dopamine neurons in the brain is a hallmark feature of Parkinson’s disease.

Susceptibility genes are genes that may make some people more or less likely to develop a disease but that do not necessarily cause the disease directly. The authors note that in this study, the size of the effect was small for any single SNP; combinations of gene variants or interactions with environmental factors may be necessary to develop Parkinson’s disease.

"This study represents the first large-scale attempt to assess the contribution of genes to susceptibility and development of Parkinson’s disease," said Kenneth Olden, Ph.D., Sc.D., chief scientific advisor for the Michael J. Fox Foundation and former director of the National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health. "If confirmed, the finding of 12 potential susceptibility genes is significant. However, equally significant is the fact that this comprehensive study found no strong single genetic determinant of Parkinson’s disease." The Michael J. Fox Foundation is organizing a large-scale validation study of the initial findings.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Building a brain, cell by cell: Researchers make a mini neuron network (of two)
23.05.2018 | Institute of Industrial Science, The University of Tokyo

nachricht Research reveals how order first appears in liquid crystals
23.05.2018 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Magnesium magnificent for plasmonic applications

23.05.2018 | Materials Sciences

Tunable diamond string may hold key to quantum memory

23.05.2018 | Physics and Astronomy

Building a brain, cell by cell: Researchers make a mini neuron network (of two)

23.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>