Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Research provides first whole genome map of genetic variability in Parkinson’s disease

13.09.2005


Findings highlight 12 potential ’susceptibility’ genes

Mayo Clinic researchers in collaboration with scientists at Perlegen Sciences, Inc. and funded by the Michael J. Fox Foundation for Parkinson’s Research have produced the first large-scale whole genome map of genetic variability associated with Parkinson’s disease. Their results highlight changes in 12 genes that may increase the risk for Parkinson’s disease in some people. Parkinson’s disease is a disabling and currently incurable disease that affects millions of people worldwide.

Mayo Clinic and Perlegen Sciences will report their findings in The American Journal of Human Genetics. The paper was published online Friday, Sept. 9 (www.ajhg.org) and will appear in the November 2005 print issue.



"This represents one of the first large-scale whole genome association studies of any disease," said the study’s first author, Mayo Clinic neurologist Demetrius Maraganore, M.D. "It is something we’ve wanted to do for years, and now we finally had the technology and funding to make it happen. If confirmed, the findings may lead to new insights about the causes of Parkinson’s disease."

Significance of the Findings

Both the findings and the technology that produced them are groundbreaking, representing one of the most comprehensive genetic studies of Parkinson’s disease to date with nearly 200 million genetic tests (genotypes) completed. To accomplish this, researchers initially studied the association of about 200,000 single-letter variations in the genome known as single nucleotide polymorphisms, or "SNPs" (pronounced "snips") in patients with Parkinson’s disease. The study examined DNA from 775 people with Parkinson’s disease (cases) and from 775 people without Parkinson’s disease (controls).

"To be most effective, a whole genome association study requires accurate testing of a large number of SNP markers that are distributed across the human genome in a dense and informative pattern," says Dr. Maraganore. "In this respect, our collaborators at Perlegen have set a new standard."

"In one year, the Michael J. Fox Foundation and Mayo Clinic have generated results that will greatly focus future research efforts in Parkinson’s disease," explained David Cox, M.D., Ph.D., chief scientific officer of Perlegen Sciences. "If replication of only one of these findings leads to a better understanding of the causes of the disease or improvements in the early detection or treatment of patients, we will have made significant progress."

Noteworthy findings include:

  • Confirmation that variation in two previously known regions of the genome, PARK10 and PARK11, are likely associated with Parkinson’s disease susceptibility.
  • Identification of 10 additional SNPs that appear to be associated with Parkinson’s disease susceptibility. Some of these are in or near genes with direct biological relevance to the disease. For instance, one of these, the SEMA5A gene, may play an important role in both the development and programmed death of dopamine-producing nerve cells in the brain. Selective degeneration of dopamine neurons in the brain is a hallmark feature of Parkinson’s disease.

Susceptibility genes are genes that may make some people more or less likely to develop a disease but that do not necessarily cause the disease directly. The authors note that in this study, the size of the effect was small for any single SNP; combinations of gene variants or interactions with environmental factors may be necessary to develop Parkinson’s disease.

"This study represents the first large-scale attempt to assess the contribution of genes to susceptibility and development of Parkinson’s disease," said Kenneth Olden, Ph.D., Sc.D., chief scientific advisor for the Michael J. Fox Foundation and former director of the National Institute of Environmental Health Sciences (NIEHS) of the National Institutes of Health. "If confirmed, the finding of 12 potential susceptibility genes is significant. However, equally significant is the fact that this comprehensive study found no strong single genetic determinant of Parkinson’s disease." The Michael J. Fox Foundation is organizing a large-scale validation study of the initial findings.

Lisa Lucier | EurekAlert!
Further information:
http://www.mayo.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>