Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Microtubules May Be Linked to Mental Disorders

13.09.2005


Destruction prevents transport of receptors necessary for cognition and emotion

Neuroscientists at the University at Buffalo have shown in two recently published papers that destabilization of structures called microtubules, intracellular highways that transport receptors to their working sites in the brain, likely underlie many mental disorders and could be promising targets for intervention.

In their most recent article, published in the Aug. 19 issue of the Journal of Biological Chemistry, they report that destabilization of microtubules interferes with the action of the NMDA receptor, a target of the neurotransmitter glutamate, which plays a critical role in learning and memory.



"You can think of NMDAR as the cargo moving along a railway consisting of the microtubules cytoskeleton," said lead author Eunice Yuen, graduate student in the laboratory of Zhen Yan, Ph.D., associate professor in the Department of Physiology and Biophysics, UB School of Medicine and Biomedical Sciences.

"Microtubules are hollow cylinders made up of polymers of the protein tubulin," she said. "Agents that break up, or depolymerize, microtubules disrupt the railway, stop the traffic and reduce the number of cargoes that get delivered to the neuronal surface.

"In turn, fewer NMDA receptors are available on the surface of the neuron to interact with its neurotransmitter, which results in fewer signals being transmitted to critical areas of the brain," said Yuen. "Defects in neuronal transport are involved in many neurological diseases."

In an earlier paper from Yan’s group published in the June 8 issue of the Journal of Neuroscience, the researchers showed that the neuromodulator serotonin, crucial to the treatment of depression and anxiety, also regulates NMDA receptor function through the mechanism dependent on microtubules. Yan was senior author on both papers.

"We hypothesize that the function of the serotonin receptor known as 5-HT1AR is to suppress the activity of the NMDA receptor by coupling to cellular signaling, which depolymerizes microtubules,"

said Yuen, first author on the paper. "The breakup of microtubules, in turn, interrupts NMDAR delivery to the neuronal surface, resulting in suppression of NMDAR function.

"This evidence shows that serotonin can regulate NMDAR transport along the microtubule cytoskeleton in neurons," she said. "Dysfunction of this regulation may provide a potential mechanism underlying many mental disorders."

Also contributing to these studies were Zhenglin Gu, post-doctoral associate, and Paul Chen, medical and doctoral student in Yan’s laboratory, and Qian Jiang, post-doctoral associate in the laboratory of Jian Feng, Ph.D., UB associate professor of physiology and biophysics.

The studies were supported by grants from the National Institutes of Health and the National Science Foundation, and a National Alliance for Research on Schizophrenia and Depression Independent Investigator Award to Yan.

The University at Buffalo is a premier research-intensive public university, the largest and most comprehensive campus in the State University of New York.

Lois Baker | EurekAlert!
Further information:
http://www.buffalo.edu

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>