Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unusual RNAs linked to chronic leukemia, may help treat it

13.09.2005


A new and unusual class of genes plays an important role in the development of chronic lymphocytic leukemia (CLL), according to new research here. At the same time, these genes may provide a new form of therapy for the disease.

CLL strikes some 9,700 Americans annually, making it the most common adult leukemia in the world.

The study found that the loss of two genes for producing small molecules known as microRNAs enables damaged cells to survive, rather than normally self-destructing before they become cancerous.



“Our findings show that microRNA genes are involved in the development of CLL,” says principal investigator Carlo M. Croce, professor and chair, Department of Molecular Virology, Immunology and Medical Genetics at Ohio State, and director of the Human Cancer Genetics Program at the OSU Comprehensive Cancer Center. “They also strongly suggest that microRNAs might be used therapeutically for CLL and probably other cancers.”

The research is published online in the current issue of the Proceedings of the National Academy of Science.

The two microRNA genes are known as miR-15 and miR-16. Earlier work led by Croce showed that about 65 percent of CLL patients have cancer cells that show the loss of, or damage to, these genes.

This study shows that the two microRNAs interact closely with a protein known as Bcl-2. That protein stops cells from self-destructing through a natural process known as apoptosis. (In 1984, Croce led the research that discovered the Bcl-2 gene.)

In CLL cells and cells from other kinds of cancer, the Bcl-2 protein is present in abnormally high levels. This prevents the malignant cells from self-destructing as they should and leads to tumor growth. In about 95 percent of CLL cases, scientists did not know why Bcl-2 was present at high levels. The current paper now answers that.

Croce and his colleagues discovered that the miR-15 and miR-16 microRNAs play an important role in controlling Bcl-2 levels, normally keeping them low. When the two microRNA genes are lost – as often happens in CLL – the levels of Bcl-2 rise, the cells do not self-destruct as they should, allowing cancer to occur.

Croce and his colleagues explored the relationship between miR-15 and miR-16 in several experiments.

For example, the investigators compared cells from 26 CLL patients with cells from four healthy individuals. The normal cells showed high levels of the two microRNAs and low levels of the Bcl-2 protein; the CLL cells showed just the opposite: low levels of the two microRNAs and high levels of the Bcl-2 protein.

In another experiment, the researchers used laboratory-grown leukemia cells that had lost the two microRNAs. These cells showed high levels of Bcl-2.

Perhaps most importantly, when the researchers then put genes for miR-15 and miR-16 into the cells, the levels of the Bcl-2 dropped and the cells began to self-destruct through apoptosis.

“This finding is significant, and it also suggests that miR-15 and miR-16 provide an effective therapy for tumors that overexpress Bcl-2,” Croce says. “It also suggests that the loss of miR-15 and miR-16, and the resulting over-expression of Bcl-2, is the main mechanism of human CLL development in a major fraction of cases.”

Funding from National Cancer Institute, the Italian Ministry of Public Health, the Italian Ministry of University Research, the Italian Association of Cancer Research and a Kimmel Scholar award supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Transport of molecular motors into cilia

28.03.2017 | Life Sciences

A novel hybrid UAV that may change the way people operate drones

28.03.2017 | Information Technology

NASA spacecraft investigate clues in radiation belts

28.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>