Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Native Plant Eaters Have Gourmet Palates


A crayfish dines on an exotic delicacy of Egeria densa

Here’s a test. Take a crayfish, offer it two meals – one the native plants that it eats everyday, the other a gourmet meal of a similar, but exotic species of plant. Conventional biological wisdom predicts it will stick with the tried and true. But new research at the Georgia Institute of Technology suggests that plant eaters may be more adventurous than previously thought and prefer to nosh on exotic meals by a ratio of three to one. The findings, which appear in the September issue of Ecology Letters, could point the way to better strategies for controlling the billions of dollars in damage that invasive species cause every year.

The research runs counter to the enemy release hypothesis, first proposed by Charles Darwin in 1859, which holds that exotic species become invasive because they are free from the pressures of being eaten by their natural enemies in their native environment. Left without these controls, exotic plant species can run amuck and crowd out the native flora.

“What enemy release doesn’t take into account is that while exotic plants may be free from their so-called natural enemies from their home range, they gain novel enemies in their new range,” said John Parker, graduate student at Georgia Tech. “Because they’ve never had to adapt to being eaten by these consumers, they may lack the appropriate defenses to ward them off, essentially going from the frying pan into the fire.”

Parker and biology professor Mark Hay tested the enemy release hypothesis with two species of crayfish found in the southeastern United States and one species of grass carp that had previously been introduced from Asia to control aquatic weed growth.

They paired 10 exotic plants with related native plants in the lab to test how the crayfish would respond when given a choice between similar plants. They found the crayfish preferred the exotic plants by a ratio of three to one.

In another part of the study, they took a broader view of feeding preferences by feeding 57 native and 15 exotic plant species collected from 11 sites throughout the southeastern United States to both species of crayfish and to the Asian grass carp. Again they found native crayfishes preferred the exotic meals. But the exotic grass carp had no preferences. It shares little evolutionary history with either native or exotic plants, so essentially all the plants were exotic to it– a finding that further suggests that the evolutionary history between plants and their consumers is an important predictor of plant edibility.

Parker and Hay were so surprised by their findings that they re-examined data from the scientific literature on the feeding preferences of terrestrial herbivores, including three native grasshoppers and one native and four exotic slugs. The studies they looked at had never analyzed their data for the palatability of native vs. exotic plants.

“We really wanted to challenge our findings for aquatic systems,” said Parker. “We wanted to know if perhaps aquatic and terrestrial systems work differently and our unusual results were the result of working in a system that nobody had looked at before.”

They were even more surprised when their new results looked exactly like their findings for aquatic herbivores. In these three studies, one conducted in the mountains of the Pacific Northwest, another in the plains of Texas and another in the forests of upstate New York, all four native herbivores again preferred exotic plants over natives. Three of the four exotic consumers again had no preference.

“Now we had essentially four separate studies with 11 herbivores and over 300 plant species collected from all around the continental United States all saying essentially the same thing: native herbivores prefer to consume exotic over native plants,” said Parker.

While the results of these studies run counter to the widely accepted enemy release hypothesis, they do support the ‘new associations’ hypothesis of biological control. This hypothesis holds that since native plants have evolved alongside their native consumers, they’ve developed defenses to them. Since the newly introduced plants haven’t evolved with the native consumers, they may lack appropriate defenses and may be more prone to being eaten in their new environment.

“This is analogous to disease theory in that you might be highly susceptible to new diseases or enemies that you haven’t built up resistance against,” said Parker.

In addition to its biological importance, the research may help point the way to better strategies for controlling the damage caused by exotic species – estimated by noted Cornell ecologist David Pimentel to be more than $137 billion per year in the United States alone.

“Currently, most exotic plant control is done with herbicides, mechanical removal or by importing the plants’ exotic enemies,” said Parker. “Each of these methods has serious drawbacks, including high costs and the potential for harmful effects on native species. Our results imply that restoring native herbivore communities may be a viable option to help control exotic plant invasions.”

Parker is now working on determining whether native herbivores do in fact control exotic plant growth in field settings, an important step in determining whether biological control with native herbivores is feasible.

“Hopefully our results will also lead to better hypotheses about why some exotic species fare so well in their new environments,” he said.

The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

David Terraso | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Gene therapy shows promise for treating Niemann-Pick disease type C1
27.10.2016 | NIH/National Human Genome Research Institute

nachricht 'Neighbor maps' reveal the genome's 3-D shape
27.10.2016 | International School of Advanced Studies (SISSA)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

'Neighbor maps' reveal the genome's 3-D shape

27.10.2016 | Life Sciences

Gene therapy shows promise for treating Niemann-Pick disease type C1

27.10.2016 | Life Sciences

Solid progress in carbon capture

27.10.2016 | Power and Electrical Engineering

More VideoLinks >>>