Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Native Plant Eaters Have Gourmet Palates

12.09.2005


A crayfish dines on an exotic delicacy of Egeria densa


Here’s a test. Take a crayfish, offer it two meals – one the native plants that it eats everyday, the other a gourmet meal of a similar, but exotic species of plant. Conventional biological wisdom predicts it will stick with the tried and true. But new research at the Georgia Institute of Technology suggests that plant eaters may be more adventurous than previously thought and prefer to nosh on exotic meals by a ratio of three to one. The findings, which appear in the September issue of Ecology Letters, could point the way to better strategies for controlling the billions of dollars in damage that invasive species cause every year.

The research runs counter to the enemy release hypothesis, first proposed by Charles Darwin in 1859, which holds that exotic species become invasive because they are free from the pressures of being eaten by their natural enemies in their native environment. Left without these controls, exotic plant species can run amuck and crowd out the native flora.

“What enemy release doesn’t take into account is that while exotic plants may be free from their so-called natural enemies from their home range, they gain novel enemies in their new range,” said John Parker, graduate student at Georgia Tech. “Because they’ve never had to adapt to being eaten by these consumers, they may lack the appropriate defenses to ward them off, essentially going from the frying pan into the fire.”



Parker and biology professor Mark Hay tested the enemy release hypothesis with two species of crayfish found in the southeastern United States and one species of grass carp that had previously been introduced from Asia to control aquatic weed growth.

They paired 10 exotic plants with related native plants in the lab to test how the crayfish would respond when given a choice between similar plants. They found the crayfish preferred the exotic plants by a ratio of three to one.

In another part of the study, they took a broader view of feeding preferences by feeding 57 native and 15 exotic plant species collected from 11 sites throughout the southeastern United States to both species of crayfish and to the Asian grass carp. Again they found native crayfishes preferred the exotic meals. But the exotic grass carp had no preferences. It shares little evolutionary history with either native or exotic plants, so essentially all the plants were exotic to it– a finding that further suggests that the evolutionary history between plants and their consumers is an important predictor of plant edibility.

Parker and Hay were so surprised by their findings that they re-examined data from the scientific literature on the feeding preferences of terrestrial herbivores, including three native grasshoppers and one native and four exotic slugs. The studies they looked at had never analyzed their data for the palatability of native vs. exotic plants.

“We really wanted to challenge our findings for aquatic systems,” said Parker. “We wanted to know if perhaps aquatic and terrestrial systems work differently and our unusual results were the result of working in a system that nobody had looked at before.”

They were even more surprised when their new results looked exactly like their findings for aquatic herbivores. In these three studies, one conducted in the mountains of the Pacific Northwest, another in the plains of Texas and another in the forests of upstate New York, all four native herbivores again preferred exotic plants over natives. Three of the four exotic consumers again had no preference.

“Now we had essentially four separate studies with 11 herbivores and over 300 plant species collected from all around the continental United States all saying essentially the same thing: native herbivores prefer to consume exotic over native plants,” said Parker.

While the results of these studies run counter to the widely accepted enemy release hypothesis, they do support the ‘new associations’ hypothesis of biological control. This hypothesis holds that since native plants have evolved alongside their native consumers, they’ve developed defenses to them. Since the newly introduced plants haven’t evolved with the native consumers, they may lack appropriate defenses and may be more prone to being eaten in their new environment.

“This is analogous to disease theory in that you might be highly susceptible to new diseases or enemies that you haven’t built up resistance against,” said Parker.

In addition to its biological importance, the research may help point the way to better strategies for controlling the damage caused by exotic species – estimated by noted Cornell ecologist David Pimentel to be more than $137 billion per year in the United States alone.

“Currently, most exotic plant control is done with herbicides, mechanical removal or by importing the plants’ exotic enemies,” said Parker. “Each of these methods has serious drawbacks, including high costs and the potential for harmful effects on native species. Our results imply that restoring native herbivore communities may be a viable option to help control exotic plant invasions.”

Parker is now working on determining whether native herbivores do in fact control exotic plant growth in field settings, an important step in determining whether biological control with native herbivores is feasible.

“Hopefully our results will also lead to better hypotheses about why some exotic species fare so well in their new environments,” he said.


The Georgia Institute of Technology is one of the nation’s premiere research universities. Ranked among U.S. News & World Report’s top 10 public universities, Georgia Tech educates more than 16,000 students every year through its Colleges of Architecture, Computing, Engineering, Liberal Arts, Management and Sciences. Tech maintains a diverse campus and is among the nation’s top producers of women and African-American engineers. The Institute offers research opportunities to both undergraduate and graduate students and is home to more than 100 interdisciplinary units plus the Georgia Tech Research Institute. During the 2003-2004 academic year, Georgia Tech reached $341.9 million in new research award funding.

David Terraso | EurekAlert!
Further information:
http://www.icpa.gatech.edu

More articles from Life Sciences:

nachricht Closing the carbon loop
08.12.2016 | University of Pittsburgh

nachricht Newly discovered bacteria-binding protein in the intestine
08.12.2016 | University of Gothenburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>