Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

PUMA protein coordinates the cell-suicide activities of p53 in the nucleus and cytoplasm

12.09.2005


PUMA travels from the nucleus to the cytoplasm to free p53 from the grip of Bcl-xL, allowing p53 to trigger signaling on mitochondria that leads to cell death, according to St. Jude



The discovery of how the activities of the protein p53 initiate signals that trigger cell suicide offers critical insights for developing new anti-cancer drugs, according to investigators from St. Jude Children’s Research Hospital. A report on this work appears in the September 9 issue of Science.

The new study showed that the protein PUMA frees p53 from the grip of a third protein, Bcl-xL, so p53 can activate the series of signals that triggers programmed cell suicide, or apoptosis. Apoptosis is the mechanism by which abnormal cells are eliminated from the body before they can cause disease, including cancer. For example, if the cell suffers a non-repairable injury to its genetic material, the p53 gene becomes active and produces the p53 protein, which accumulates both in the nucleus and cytoplasm of the damaged cell. The accumulation of p53 in the cytoplasm and nucleus each contribute to apoptosis, but until this finding, scientists did not know these contributions were linked.


The study’s finding solves the long-standing puzzle of why p53 activity occurs in both the nucleus and cytoplasm during apoptosis, according to Jerry E. Chipuk, Ph.D., now a post-doctoral fellow in the Department of Immunology at St. Jude Children’s Research Hospital. Chipuk is the first author of the Science article. This work was completed, before his appointment at St. Jude, with colleagues at the La Jolla Institute for Allergy and Immunology and the University of Iowa.

The researchers propose the following scenario for the role of PUMA in apoptosis: First, p53 inside the nucleus regulates the expression (activity) of several genes linked to apoptosis, including PUMA. The PUMA protein is then produced in the cytoplasm, where other p53 proteins are bound to Bcl-xL. Finally, PUMA binds to the p53/Bcl-xL pair, causing p53 to break free. After p53 is liberated, it triggers a series of signals on the cell’s mitochondria-tiny membrane-bound capsules of enzymes that produce the energy-rich molecules required for cellular activities. The membranes covering mitochondria become punctured, allowing certain molecules to leak out and engage the process of apoptosis.

The binding of PUMA to the p53/Bcl-xL pair creates what Chipuk describes as the "tripartite nexus" (three-part connection) that orchestrates the complex web of signals leading to apoptosis.

"Our scenario consolidates a lot of evidence from our group and other researchers to explain how p53, Bcl-xL, and PUMA work together to trigger apoptosis," said Douglas Green, Ph.D., chair of the Immunology Department at St. Jude and senior author of the paper. Green previously led the Division of Cellular Immunology at the La Jolla Institute of Allergy and Immunology (San Diego, CA). A leader in the field of apoptosis, he will integrate immune system research into the ongoing efforts of St. Jude to improve diagnosis and treatment of childhood catastrophic diseases.

"The concept of the tripartite nexus also gives us insight into how to develop novel drugs to save certain cells," Green said. "For example, if we could block the formation of the nexus in children receiving radiation or chemotherapy for cancer, we might be able to save otherwise healthy cells from the side effects of these treatments. Or, we might be able to encourage the formation of the tripartite nexus in cells that pose a threat to the body."

Green’s team studied the interaction of p53, Bcl-xL and PUMA in laboratory models of cells. The researchers combined a p53/Bcl-xL pair with the cytosol (liquid part) of cells that had been exposed to ultraviolet (UV) radiation. UV radiation damages genes and normally would cause the tripartite nexus to assemble in order to trigger apoptosis.

Cytosol from normal cells containing the PUMA gene disrupted the Bcl-xL/p53 complex; but cytosol from cells lacking this gene did not disrupt the complex. This strongly suggested that PUMA is needed to free p53 from Bcl-xL.

In addition, the researchers showed that when an excessive amount of p53 was present, PUMA was no longer required to release p53 from Bcl-xL. This occurred, for example, when there was not enough Bcl-xL to bind all of the p53 that was produced by multiple damaging events to the cell’s genetic material. In this scenario, even in the absence of PUMA, enough free p53 was available to cause the membranes of mitochondria to be punctured and apoptosis to occur.

The team also showed that in the absence of the p53 gene, PUMA itself could not trigger the puncturing of mitochondria and subsequent apoptosis.

Other authors of the paper include Lisa Bouchier-Hayes and Donald D. Newmeyer (La Jolla Institute for Allergy and Immunology) and Tomomi Kuwana (La Jolla Institute for Allergy and Immunology; currently at the University of Iowa, Department of Pathology, Iowa City, IA). This work was supported in part by the National Institutes of Health and an Individual National Research Service Award to Jerry E. Chipuk.

Carrie Strehlau | EurekAlert!
Further information:
http://www.stjude.org

More articles from Life Sciences:

nachricht Repairing damaged hearts with self-healing heart cells
22.08.2017 | National University Health System

nachricht Biochemical 'fingerprints' reveal diabetes progression
22.08.2017 | Umea University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Cholesterol-lowering drugs may fight infectious disease

22.08.2017 | Health and Medicine

Meter-sized single-crystal graphene growth becomes possible

22.08.2017 | Materials Sciences

Repairing damaged hearts with self-healing heart cells

22.08.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>