Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unique Map Created of Human Protein Interactions

12.09.2005


Who works together with whom? This is the question scientists at the Max Delbrück Center for Molecular Medicine (MDC) Berlin-Buch have investigated with regard to human proteins. The answer can be found within a map – the first one in international research – showing 3,186 interactions between 1,705 human proteins. Among them: 531 previously unknown interactions involving 195 disease proteins, highly relevant for medical research.



“We have laid the foundation for a comprehensive connection scheme of the human body. The map helps us understand the functions of proteins and the complex processes in our cells,” explains Professor Erich Wanker, who directed the study.

The work of Professor Wanker and Dr. Ulrich Stelzl, to which scientists from the Max Planck Institute for Molecular Genetics (Berlin) and the German Resource Center for Genome Research GmbH (Heidelberg) contributed, has now been published in the online edition of Cell* (DOI: 10.1016/S0092867405008664). The researchers were able to conduct the project, which is the first extensive human protein network to be published, with the support of the National Genome Research Network (NGFN) – a large scale biomedical program initiated by the German Federal Ministry for Education and Research (BMBF). The NGFN enables scientists to systematically investigate human genes and proteins and their role in health and disease.


With their new map, the MDC scientists hope to better understand the onset of diseases and to discover new molecular targets for therapy. They have identified new protein interactions that can modulate cellular signalling cascades like the Wnt pathway, important in the development of human cancers. “Our interaction map sheds new light on the function and dysfunction of many proteins”, according to Professor Wanker.

The extensive studies on human protein-protein interactions were carried out with a special technology: the automated yeast two-hybrid system (Y2H). In this method, yeast cells are employed to identify the binding partners of proteins. “Interaction studies used to involve laborious manual procedures. Now, a robot system processes thousands of reactions as fast as lightning,” Erich Wanker explains. “We established the robotics unit four years ago and are proud to be the first lab to present a large scale human protein network to the community,“ say Wanker and Stelzl, after testing 25 million protein samples and creating a database that gives full access to the results to fellow scientists.

Barbara Bachtler | alfa
Further information:
http://www.mdc-berlin.de/englisch/about_the_mdc/public_relations/e_index.htm

More articles from Life Sciences:

nachricht Designer cells: artificial enzyme can activate a gene switch
22.05.2018 | Universität Basel

nachricht Flow of cerebrospinal fluid regulates neural stem cell division
22.05.2018 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Matabele ants: Travelling faster with detours

22.05.2018 | Life Sciences

Flow of cerebrospinal fluid regulates neural stem cell division

22.05.2018 | Life Sciences

Chemists at FAU successfully demonstrate imine hydrogenation with inexpensive main group metal

22.05.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>