Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery that bacterium is a phosphate gourmet key clue to what makes it most social bacteria


New research into one of the world’s most social bacteria - Myxococcus xanthus, has discovered that it has a gourmet style approach to its consumption of phosphates, which provides a key clue to what makes it the most "social" of bacteria.

Myxococcus xanthus is amazingly social and co-operative for a bacterium. It "hunts" as a pack, it makes a collective decision with other M. xanthus whether to go dormant or not, and it even has methods of policing the behaviour of individual bacteria that try to "cheat" in the collective activity of the group. Now Dr David Whitworth from the Biological Sciences Department of the University of Warwick has also discovered that it appears to seek out and consume phosphate in a "gourmet" manner, providing important evidence as to how such a relatively simple organism is able to act in such a social manner.

Dr Whitworth looked at the signalling pathways used by the bacterium to process information to switch actions on or off. Myxococcus xanthus has an unprecedented number (around 150) of the signalling pathways known as "two component switches" which dramatically increases the level of complexity of information that can be processed by the bacterium. Dr Whitworth focussed on three previously described signalling pathways that were known to be similar to phosphate utilisation pathways (all organisms need to consume phosphate to thrive). Until now most researchers believed that all bacteria only required one phosphate dependent signalling pathway to find the phosphate needed for consumption, and so the other two pathways found in M. xanthus simply did something else. In collaboration with Prof Mitchell Singer of the University of California at Davis, Dr Whitworth found that in fact the bacterium was using all three pathways and part of a further fourth pathway in combination, to detect and utilise phosphates, making it a very sophisticated consumer of phosphates - the bacterial equivalent of a gourmet diner.

That the 3 pathways act in concert probably enables the organism to find phosphates in different chemical states or environmental conditions, or even to exploit the phosphates found in other M. xanthus cells or those of potential prey organisms. Dr Whitworth found that:

  • The potential complexity of the information on phosphate levels that the bacterium can process is significantly increased by the findings that there are three phosphate signalling pathways, with considerable interaction between the three pathways.
  • A further additional partial pathway also acts as a phosphate level detector - giving the bacterium even more tools to employ as a phosphate gourmet.
  • Dr Whitworth also has evidence that the surprising extent of interaction between the three and a half phosphate signalling pathways is also found among the other 140 plus signalling pathways of the bacterium. If three and half pathways are enough to make it a phosphate gourmet, the level of interactions between up to 150 pathways will easily be enough to give Myxococcus xanthus its precocious social skills.

    Dr David Whitworth | EurekAlert!
    Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>