Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery that bacterium is a phosphate gourmet key clue to what makes it most social bacteria

09.09.2005


New research into one of the world’s most social bacteria - Myxococcus xanthus, has discovered that it has a gourmet style approach to its consumption of phosphates, which provides a key clue to what makes it the most "social" of bacteria.



Myxococcus xanthus is amazingly social and co-operative for a bacterium. It "hunts" as a pack, it makes a collective decision with other M. xanthus whether to go dormant or not, and it even has methods of policing the behaviour of individual bacteria that try to "cheat" in the collective activity of the group. Now Dr David Whitworth from the Biological Sciences Department of the University of Warwick has also discovered that it appears to seek out and consume phosphate in a "gourmet" manner, providing important evidence as to how such a relatively simple organism is able to act in such a social manner.

Dr Whitworth looked at the signalling pathways used by the bacterium to process information to switch actions on or off. Myxococcus xanthus has an unprecedented number (around 150) of the signalling pathways known as "two component switches" which dramatically increases the level of complexity of information that can be processed by the bacterium. Dr Whitworth focussed on three previously described signalling pathways that were known to be similar to phosphate utilisation pathways (all organisms need to consume phosphate to thrive). Until now most researchers believed that all bacteria only required one phosphate dependent signalling pathway to find the phosphate needed for consumption, and so the other two pathways found in M. xanthus simply did something else. In collaboration with Prof Mitchell Singer of the University of California at Davis, Dr Whitworth found that in fact the bacterium was using all three pathways and part of a further fourth pathway in combination, to detect and utilise phosphates, making it a very sophisticated consumer of phosphates - the bacterial equivalent of a gourmet diner.


That the 3 pathways act in concert probably enables the organism to find phosphates in different chemical states or environmental conditions, or even to exploit the phosphates found in other M. xanthus cells or those of potential prey organisms. Dr Whitworth found that:

  • The potential complexity of the information on phosphate levels that the bacterium can process is significantly increased by the findings that there are three phosphate signalling pathways, with considerable interaction between the three pathways.
  • A further additional partial pathway also acts as a phosphate level detector - giving the bacterium even more tools to employ as a phosphate gourmet.
  • Dr Whitworth also has evidence that the surprising extent of interaction between the three and a half phosphate signalling pathways is also found among the other 140 plus signalling pathways of the bacterium. If three and half pathways are enough to make it a phosphate gourmet, the level of interactions between up to 150 pathways will easily be enough to give Myxococcus xanthus its precocious social skills.

    Dr David Whitworth | EurekAlert!
    Further information:
    http://www.warwick.ac.uk

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>