Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

NYU researchers discover mechanism linking color vision and cancer genes

09.09.2005


Biologists at New York University have discovered a system by which a random choice between two distinct cellular fates in the fruit fly eye becomes firmly established. Surprisingly, the genes involved are known ’tumor suppressor genes’, i.e. genes that are inactivated in some forms of cancer due to uncontrolled cell proliferation. Because the fly eye is highly amenable to genetic analysis, these findings, published in the latest issue of Cell, could help decipher the mechanisms by which genes that control cell proliferation and cell growth are themselves regulated.



In this study, researchers from Dr. Claude Desplan’s laboratory in the Center for Developmental Genetics at NYU Biology used the fly eye to understand the mechanism that affects the choice between photoreceptors that allows color discrimination: A given color photoreceptor can randomly decide to express a blue, or a green photopigment, but expressing both would lead to sensory confusion. Therefore, a switch mechanism ensures that photoreceptors make an unambiguous decision. Interestingly, the genes involved in this switch appear to be part of a tumor suppressor pathway.

Researchers have recently uncovered processes by which groups of genes work together to affect the number and size of cells. These genes are often affected in cancers where cells proliferate in an uncontrolled manner. Less clear, however, are the upstream mechanisms that control this genetic activity: Understanding the regulation of these pathways is essential as it would enhance our ability to control processes by which cancer cells replicate or die. Although the photoreceptors have long completed their last cell division, they appear to re-utilize the genetic pathways known to control cell proliferation and cell size to achieve a stable state.


"These genes form a bistable loop that insures a robust commitment of color photoreceptors that does allow ambiguity," said Desplan, the study’s corresponding author. "This represents an unexpected role for genes known to control cell proliferation and cell growth."

James Devitt | EurekAlert!
Further information:
http://www.nyu.edu

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>