Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How are cells held together?

09.09.2005


At the Institut Curie, the CNRS team of Yohanns Bellaïche has just discovered a new cellular component that participates in the organization of cells in the epithelium. This tissue, which forms a barrier between our body and the outside world, is an extremely coherent structure of myriad cells that fit together according to very precise rules. This cohesion holds together the tissues that compose the organs and controls the "comings and goings" of various substances between the outside world and our body.


When cellular adhesives come unstuck… One of the components of the exocyst has been inactivated in these cells. The two cellular adhesives – cadherin (pink) and _-catenin (blue) – are dispersed through the cytoplasm instead of being localized essentially at the membranes, to form the intercellular junction. © J. Langevin/Institut Curie



The Institut Curie CNRS researchers’ discovery sheds light on how cells "stick together", thereby ensuring the cohesion needed for proper bodily functioning, but also clarifies the problems that may arise if this cellular cohesion is impaired. When tumor cells no longer stick together, they can move around and invade other tissues. This leads to a risk of propagation via metastases, which complicates the treatment of cancer.
These results are published in the September 2005 issue of Developmental Cell.

The epithelium lines all the cavities of our body. Like a border, it separates inside from out: the skin isolates us from the outside world, epithelial cells lining the small intestine separate the intestinal cavity – the "lumen" – from the rest of the body. The epithelium also regulates "toing and froing" across the border, since its cells are polar – they have a sort of compass which tells them which way is out and which in:



- This polarity controls the point of adhesion between cells, which are held together by adhesion proteins. If cellular cohesion is impaired, epithelial integrity is altered and in certain cases this can have unfortunate consequences (see "When cells go walkabout").

- Epithelial cells are directional. They have a so-called brush border – the apical surface(1) – which optimizes surface exchange with the outside.

The epithelium, the body’s "border guard"

Cell polarity regulates the flow of information between inside and out, controls the passage of various substances (water, ions, nutrients…) between body compartments, and filters the molecules to be transported, into the blood vessels, for example.

The polarity of epithelial cells is in part maintained by a highly organized transport network which ensures that molecules are correctly directed to their "place of work" where they can perform their specific tasks. Polarity is also involved in the distribution of membrane receptors that regulate cell growth. Loss of polarity due to failure of one of the cellular adhesives – a-catenin – leads to the appearance of tumor cells whose growth is perturbed(2).

Trafficking of cellular adhesives

At the Institut Curie, Yohanns Bellaïche’s CNRS team(3) has just shown that one of the transporters of certain molecules to the cell membrane, the exocyst complex(4), plays a key role in the transport of one of the cellular adhesives, cadherin, to the junction with the adjacent cell. There, cadherin joins two other proteins(5) equally vital for cellular cohesion. Together, these adhesion proteins hold the cells together.

CNRS scientists at the Institut Curie have for the first time found evidence that the exocyst plays a part in maintaining the polarity of epithelial cells, which are essential for proper bodily functioning.

This discovery also casts light on the risks associated with loss of this function. When tumor cells lose their capacity to adhere to neighboring cells, they are able to move around and invade other tissues, leading to a risk of metastases. Clear understanding of the mechanisms of cellular adherence could enable the formation of metastases to be limited by maintaining the cohesion of tumor cells.

Catherine Goupillon | alfa
Further information:
http://www.developmentalcell.com/
http://www.curie.fr

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>