Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


How are cells held together?


At the Institut Curie, the CNRS team of Yohanns Bellaïche has just discovered a new cellular component that participates in the organization of cells in the epithelium. This tissue, which forms a barrier between our body and the outside world, is an extremely coherent structure of myriad cells that fit together according to very precise rules. This cohesion holds together the tissues that compose the organs and controls the "comings and goings" of various substances between the outside world and our body.

When cellular adhesives come unstuck… One of the components of the exocyst has been inactivated in these cells. The two cellular adhesives – cadherin (pink) and _-catenin (blue) – are dispersed through the cytoplasm instead of being localized essentially at the membranes, to form the intercellular junction. © J. Langevin/Institut Curie

The Institut Curie CNRS researchers’ discovery sheds light on how cells "stick together", thereby ensuring the cohesion needed for proper bodily functioning, but also clarifies the problems that may arise if this cellular cohesion is impaired. When tumor cells no longer stick together, they can move around and invade other tissues. This leads to a risk of propagation via metastases, which complicates the treatment of cancer.
These results are published in the September 2005 issue of Developmental Cell.

The epithelium lines all the cavities of our body. Like a border, it separates inside from out: the skin isolates us from the outside world, epithelial cells lining the small intestine separate the intestinal cavity – the "lumen" – from the rest of the body. The epithelium also regulates "toing and froing" across the border, since its cells are polar – they have a sort of compass which tells them which way is out and which in:

- This polarity controls the point of adhesion between cells, which are held together by adhesion proteins. If cellular cohesion is impaired, epithelial integrity is altered and in certain cases this can have unfortunate consequences (see "When cells go walkabout").

- Epithelial cells are directional. They have a so-called brush border – the apical surface(1) – which optimizes surface exchange with the outside.

The epithelium, the body’s "border guard"

Cell polarity regulates the flow of information between inside and out, controls the passage of various substances (water, ions, nutrients…) between body compartments, and filters the molecules to be transported, into the blood vessels, for example.

The polarity of epithelial cells is in part maintained by a highly organized transport network which ensures that molecules are correctly directed to their "place of work" where they can perform their specific tasks. Polarity is also involved in the distribution of membrane receptors that regulate cell growth. Loss of polarity due to failure of one of the cellular adhesives – a-catenin – leads to the appearance of tumor cells whose growth is perturbed(2).

Trafficking of cellular adhesives

At the Institut Curie, Yohanns Bellaïche’s CNRS team(3) has just shown that one of the transporters of certain molecules to the cell membrane, the exocyst complex(4), plays a key role in the transport of one of the cellular adhesives, cadherin, to the junction with the adjacent cell. There, cadherin joins two other proteins(5) equally vital for cellular cohesion. Together, these adhesion proteins hold the cells together.

CNRS scientists at the Institut Curie have for the first time found evidence that the exocyst plays a part in maintaining the polarity of epithelial cells, which are essential for proper bodily functioning.

This discovery also casts light on the risks associated with loss of this function. When tumor cells lose their capacity to adhere to neighboring cells, they are able to move around and invade other tissues, leading to a risk of metastases. Clear understanding of the mechanisms of cellular adherence could enable the formation of metastases to be limited by maintaining the cohesion of tumor cells.

Catherine Goupillon | alfa
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>