Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery that bacterium is a phosphate gourmet provides key clue to what makes it the most social of bacteria

09.09.2005


New research into one of the world’s most social bacteria - Myxococcus xanthus, has discovered that it has a gourmet style approach to its consumption of phosphates, which provides a key clue to what makes it the most "social" of bacteria.



Myxococcus xanthus is amazingly social and co-operative for a bacterium. It "hunts" as a pack, it makes a collective decision with other M. xanthus whether to go dormant or not, and it even has methods of policing the behaviour of individual bacteria that to try to "cheat" in the collective activity of the group. Now Dr David Whitworth from the Biological Sciences Department of the University of Warwick has also discovered that it appears to seek out and consume phosphate in a "gourmet" manner, providing important evidence as to how such a relatively simple organism is able to act in such a social manner.

Dr Whitworth looked at the signalling pathways used by the bacterium to process information to switch actions on or off. Myxococcus xanthus has an unprecedented number (around 150) of the signalling pathways known as "two component switches" which dramatically increases the level of complexity of information that can be processed by the bacterium. Dr Whitworth focussed on three previously described signalling pathways that were known to be similar to phosphate utilisation pathways (all organisms needs to consume phosphate to thrive). Until now most researchers believed that all bacteria only required one phosphate dependent signalling pathway to find the phosphate needed for consumption, and so the other two pathways found in M. xanthus simply did something else. In collaboration with Prof Mitchell Singer of the University of California at Davis, Dr Whitworth found that in fact the bacterium was using all three pathways and part of a further fourth pathway in combination, to detect and utilise phosphates, making it a very sophisticated consumer of phosphates - the bacterial equivalent of a gourmet diner.


That the 3 pathways act in concert probably enables the organism to find phosphates in different chemical states or environmental conditions, or even to exploit the phosphates found in other M. xanthus cells or those of potential prey organisms. Dr Whitworth found that:

The potential complexity of the information on phosphate levels the bacterium can process is significantly increased by the findings that there are three phosphate signalling pathways, with considerable interaction between the three pathways.

A further additional partial pathway also acts as a phosphate level detector - giving the bacterium even more tools to employ as a phosphate gourmet.

Dr Whitworth also has evidence that the surprising extent of interaction between the three and a half phosphate signalling pathways is also found among the other 140 plus signalling pathways of the bacterium. If three and half pathways are enough to make it a phosphate gourmet, the level of interactions between up to 150 pathways will easily be enough to give Myxococcus xanthus its precocious social skills.

Peter Dunn | alfa
Further information:
http://www.warwick.ac.uk
http://www2.warwick.ac.uk/newsandevents/pressreleases/NE1000000118277/

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>