Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Acute-leukemia sign may signal need for different therapy

08.09.2005


A type of chromosome change that was thought to predict a good response to treatment in patients with acute myeloid leukemia (AML) might actually signal the need for a different therapy to achieve the best outcome. The findings from this new study may alert doctors that they need to change their treatment approach for certain AML patients .

The study compared AML patients whose cancer cells showed chromosome changes known as the 8;21 translocation with patients whose cancer cells showed chromosome damage known as inversion 16.

Currently, AML patients with either the 8;21 translocation or the inversion 16 abnormalities receive the same therapy. They also tend to experience complete remission and have a better overall survival than do patients with most other subtypes of AML.



But this study found that when the two groups of patients are compared with each other – and when ethnicity, sex and other chromosome changes are considered – patients with the 8;21 abnormality fare significantly worse than do patients with inversion 16 when they receive similar therapy.

Furthermore, the researchers were surprised to find that nonwhite AML patients with the 8;21 translocation were almost six times less likely to achieve complete remission following the initial therapy than were whites.

The findings were published in a recent issue of the Journal of Clinical Oncology. They come from a Cancer and Leukemia Group B (CALGB) study initiated by researchers at The Ohio State University Comprehensive Cancer Center – Arthur G. James Cancer Hospital and Richard J. Solove Research Institute (OSU CCC-James).

The study is part of a larger CALGB cytogenetic trial chaired by Clara D. Bloomfield, professor of internal medicine and the William G. Pace III Professor in Cancer Research, OSU Cancer Scholar and senior adviser to the OSU Cancer Program.

“It’s widely believed that AML cases with these abnormalities have the same outcome,” says Bloomfield, “but our findings indicate that they don’t. Furthermore, nonwhites with the 8;21 translocation can do extremely poorly.

“While our data need to be verified, they strongly indicate that we must stop thinking about the 8;21 group as having a highly favorable type of leukemia and start asking what we might do to increase the cure rate among those patients. They may require a transplant or an experimental therapy after they achieve remission.”

Bloomfield was the first some years ago to determine that AML patients with the 8;12 translocation and inversion 16 abnormalities was particularly sensitive to a particular chemotherapy regimen and tended to have better outcomes than did many other AML patients.

“These findings indicate that patients with the 8;21 translocation do worse because, once they relapse, the disease doesn’t respond well to additional therapy,” says first author Guido Marcucci, associate professor of internal medicine and a hematologist with the OSU CCC-James.

“We need to begin reporting the outcomes of these patients as separate subgroups of AML, and we may need to offer them different treatments.”

This retrospective study analyzed the clinical characteristics and outcomes of 312 AML patients, 144 of whom had cancer cells with the 8;21 translocation and 168 of whom had inversion 16.

Of the 8;21-translocation patients, 100 were white (69 percent), 27 were African American (19 percent) and 12 were other ethnicities. Of the inversion-16 patients, 136 were white (82 percent), 13 were African American (8 percent) and 17 were of other ethnicities (10 percent).

The data showed that patients with the 8;21 abnormality were 1.5 times more likely to die of their disease than were patients with inversion 16.

In addition, nonwhite patients with the 8;21 translocation plus other abnormalities did extremely poorly, with 20 percent achieving long-term survival.

Among the patients who relapsed, those with the 8;21-translocation had significantly shorter survival than did the inversion-16 patients.

However, when the 8;21 translocation was the sole chromosomal abnormality among nonwhites, at least 50 percent are cured; and 76 percent of nonwhite patients were cured when the 8;21 translocation and a second abnormality, the loss of a portion of chromosome 9, were both present.

Whites with the 8;21 translocation showed 40 percent to 50 percent long-term survival in all cases.

Within the inversion-16 group, whites and nonwhites achieved complete remission equally. However, relapse was less likely in patients whose cancer cells had an extra chromosome 22 compared with patients whose cancer cells lacked an extra chromosome 22.

“Our findings need to be confirmed,” Bloomfield says. “But clearly, we want to learn more about why therapy is failing some patients so we can determine how to improve it.”

To put the above in context, about 55 percent of adult AML cases show chromosomal abnormalities. These have long been recognized as important predictors of treatment outcome. Certain of these abnormalities signal a poor response to therapy, while others signal a good response and a greater likelihood of complete remission or cure.

A chromosome inversion happens when a chromosome breaks in two places and the resulting fragment (or fragments) becomes inverted. The inversion 16 occurs when the two ends of chromosome 16 break off and become reversed.

A translocation occurs when a piece of one chromosome becomes attached to another chromosome.

Funding from the National Cancer Institute and The Coleman Leukemia Research Foundation supported this research.

Darrell E. Ward | EurekAlert!
Further information:
http://www.osu.edu

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>