Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key regulator of blood glucose levels discovered

08.09.2005


In many patients with type 2 diabetes, the liver acts like a sugar factory on overtime, churning out glucose throughout the day, even when blood sugar levels are high. Scientists at the Salk Institute for Biological Studies discovered a key cellular switch that controls glucose production in liver cells.

This switch may be a potential new target for the development of highly specific diabetes drugs that signal the liver to reduce the production of sugar. The Salk researchers, led by Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology, published their findings in the Sept. 7th online issue of Nature.

"It is very exciting to understand how glucose production in the liver is regulated. Now, we can try to improve the way how type 2 diabetics handle blood sugar," says Montminy.



The newly discovered switch, a protein named TORC2, turns on the expression of genes necessary for glucose production in liver cells. When describing glucose’s role in health and disease, Montminy compares the human body to a hybrid car that runs on a mix of fuels depending on its activity status: gas, or glucose, is used for high-energy activities, and battery power, or body fat, for low-energy activities. During the day, when food refuels the "gas tank," the body burns mainly glucose, and during sleep, it burns primarily fat.

The body switches from glucose to fat burning mainly in response to two key hormones -- insulin and glucagon -- that are produced by the pancreas. During feeding, the pancreas releases insulin, which promotes the burning of glucose. At night, however, the pancreas releases glucagon into the bloodstream, which signals the body to fire up the fat burner.

But even during sleep, our brain needs a constant supply of glucose to function properly. For that reason, our body actually manufactures glucose during sleep or when we are fasting. That process, called gluconeogenesis, is carried out mainly in the liver.

Insulin normally shuts down the ability of the liver to produce glucose. In individuals with Type II diabetes, however, insulin is unable to inhibit sugar production in the liver, "either because the pancreas is not producing enough insulin or because insulin’s signal can’t be ’heard,’" says Montminy. When the liver is unable to hear the insulin signal, excess glucose builds up in the bloodstream.

In addition to so-called insulin sensitizing drugs that allow insulin to work better, researchers are looking for alternative ways to shut down the production of glucose in the liver of diabetics. "Figuring out how to control glucose production in the liver is critical because many complications of diabetes, such as heart disease, kidney failure and blindness, can be reduced by maintaining a very tight control over blood sugar levels," he says.

As glucose levels run low during fasting, the pancreas sends out the hormone glucagon and instructs the liver to produce glucose. This increase in glucagon turns on the TORC2 switch and allows the liver to make more glucose. Mice that were genetically modified to make more or less TORC2 produced more or less glucose depending on the amount of available TORC2 (transducer of regulated CREB activity).

Most of the time, TORC2 sits in the cellular compartment that surrounds the nucleus, where all the genes are located. When a glucagon signal arrives, the TORC2 switch crosses the nuclear membrane, teams up with the transcriptional activator CREB and turns on all the genes necessary for gluconeogenesis. "Being located in a different part of the cell is what keeps the TORC2 switch off," explains Montminy.

The researchers also discovered that a chemical modification on TORC2 itself sequesters the protein in the cytoplasm, the viscous substance inside the cell that surrounds the nucleus. "Since we now know the molecular mechanism by which TORC2 is inactivated we can start looking for small molecules that do the same thing," says Montminy.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Show me your leaves - Health check for urban trees
12.12.2017 | Gesellschaft für Ökologie e.V.

nachricht Liver Cancer: Lipid Synthesis Promotes Tumor Formation
12.12.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Long-lived storage of a photonic qubit for worldwide teleportation

12.12.2017 | Physics and Astronomy

Multi-year submarine-canyon study challenges textbook theories about turbidity currents

12.12.2017 | Earth Sciences

Electromagnetic water cloak eliminates drag and wake

12.12.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>