Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Key regulator of blood glucose levels discovered

08.09.2005


In many patients with type 2 diabetes, the liver acts like a sugar factory on overtime, churning out glucose throughout the day, even when blood sugar levels are high. Scientists at the Salk Institute for Biological Studies discovered a key cellular switch that controls glucose production in liver cells.

This switch may be a potential new target for the development of highly specific diabetes drugs that signal the liver to reduce the production of sugar. The Salk researchers, led by Marc Montminy, a professor in the Clayton Foundation Laboratories for Peptide Biology, published their findings in the Sept. 7th online issue of Nature.

"It is very exciting to understand how glucose production in the liver is regulated. Now, we can try to improve the way how type 2 diabetics handle blood sugar," says Montminy.



The newly discovered switch, a protein named TORC2, turns on the expression of genes necessary for glucose production in liver cells. When describing glucose’s role in health and disease, Montminy compares the human body to a hybrid car that runs on a mix of fuels depending on its activity status: gas, or glucose, is used for high-energy activities, and battery power, or body fat, for low-energy activities. During the day, when food refuels the "gas tank," the body burns mainly glucose, and during sleep, it burns primarily fat.

The body switches from glucose to fat burning mainly in response to two key hormones -- insulin and glucagon -- that are produced by the pancreas. During feeding, the pancreas releases insulin, which promotes the burning of glucose. At night, however, the pancreas releases glucagon into the bloodstream, which signals the body to fire up the fat burner.

But even during sleep, our brain needs a constant supply of glucose to function properly. For that reason, our body actually manufactures glucose during sleep or when we are fasting. That process, called gluconeogenesis, is carried out mainly in the liver.

Insulin normally shuts down the ability of the liver to produce glucose. In individuals with Type II diabetes, however, insulin is unable to inhibit sugar production in the liver, "either because the pancreas is not producing enough insulin or because insulin’s signal can’t be ’heard,’" says Montminy. When the liver is unable to hear the insulin signal, excess glucose builds up in the bloodstream.

In addition to so-called insulin sensitizing drugs that allow insulin to work better, researchers are looking for alternative ways to shut down the production of glucose in the liver of diabetics. "Figuring out how to control glucose production in the liver is critical because many complications of diabetes, such as heart disease, kidney failure and blindness, can be reduced by maintaining a very tight control over blood sugar levels," he says.

As glucose levels run low during fasting, the pancreas sends out the hormone glucagon and instructs the liver to produce glucose. This increase in glucagon turns on the TORC2 switch and allows the liver to make more glucose. Mice that were genetically modified to make more or less TORC2 produced more or less glucose depending on the amount of available TORC2 (transducer of regulated CREB activity).

Most of the time, TORC2 sits in the cellular compartment that surrounds the nucleus, where all the genes are located. When a glucagon signal arrives, the TORC2 switch crosses the nuclear membrane, teams up with the transcriptional activator CREB and turns on all the genes necessary for gluconeogenesis. "Being located in a different part of the cell is what keeps the TORC2 switch off," explains Montminy.

The researchers also discovered that a chemical modification on TORC2 itself sequesters the protein in the cytoplasm, the viscous substance inside the cell that surrounds the nucleus. "Since we now know the molecular mechanism by which TORC2 is inactivated we can start looking for small molecules that do the same thing," says Montminy.

Cathy Yarbrough | EurekAlert!
Further information:
http://www.salk.edu

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>