Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Markers of brain cell development may help success of stem cell transplants

07.09.2005


Four sugar-coated faces made by stem cells as they differentiate into brain cells during development have been identified by scientists.



These unique expressions of sugar on the cell surface may one day enable stem cell therapy to repair brain injury or disease by helping stem cells navigate the relative “jungle” of the adult brain, says Dr. Robert K. Yu, director of the Institute of Neuroscience and the Institute for Molecular Medicine and Genetics at the Medical College of Georgia.

“These glycoconjugate markers are like specific addresses that characterize the cell at that particular moment. We call them stage-specific embryonic antigens,” says Dr. Yu of recognition molecules that assist in the unbelievably rapid assemblage of 100 billion to 200 billion cells into a brain in nine months.


The four compounds – two glycolipids, GD3 and O-acetylated GD3, and two glycoproteins, Stage-specific Embryonic Antigen-1 and Human Natural Killer Cell Antigen 1 – were known, but their role in helping cells migrate where and when needed was unknown.

The findings of Dr. Yu, Postdoctoral Fellow Makoto Yanagisawa and Dr. Sean Liour, co-director of MCG’s Human Stem Cell Bank, are being presented during the biannual International Symposium on Glycoconjugates, Sept. 4-9 in Florence, Italy. Dr. Yu is a meeting organizer and is chairing the session on Regulatory Mechanisms for Glycolipid Expression and Intracellular Trafficking.

“We are all sugar-coated, really,” says Dr. Yu, who studies these cell surface molecules that change constantly during development. “There is an abundance of sugar on the cell surface, not only that defines the cell’s properties but also help cells recognize each other and stick together,” he says, noting how like cells bind to form an organ.

During brain formation, for example, cells are constantly changing their sugar face and their function to meet the immediate biological needs. They travel a sort of neuron interstate laid out by the first stem cells formed in development before rapid cell migration and transformation begins. “These ‘interstates’ are called Bergmann glia or glial fibers. They serve as guidance for the neuronal cells to migrate,” Dr. Yu says of the network that is maintained in the adult brain despite the fact that mature neurons don’t really change.

Conditions such as trauma, spinal cord injury and stroke can destroy these travel networks as well as brain cells. Labs such as Dr. Yu’s are doing stem cell transplants to re-establish roadways and get undifferentiated stem cells to repopulate such ravaged areas. He hopes the new developmental markers will help in this effort by showing what cell surface molecules should look like – and consequently how the cells should act – at certain points along the way.

Two of the biggest problems facing stem cell transplantation are functional recovery – getting the cells to do the right job once they arrive at a target organ – and controlling their proliferation so they don’t start forming tumors, says Dr. Yu.

MCG Biochemist Erhard Bieberich is exploring the potential of the lipid ceramide, which helps eliminate potentially harmful cells during brain development, to halt unwanted proliferation of transplanted stem cells.

Dr. Yu hopes the new developmental markers will help with the other problem. “There are other players, but these are important factors that help the brain form. I think it’s a good start. Now that we have these to use as examples, discovery of other markers should come faster.”

The work was funded by the National Institutes of Health, the Children’s Medical Research Foundation in Chicago and the Cerebral Ataxia Association in Taiwan.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>