Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Markers of brain cell development may help success of stem cell transplants

07.09.2005


Four sugar-coated faces made by stem cells as they differentiate into brain cells during development have been identified by scientists.



These unique expressions of sugar on the cell surface may one day enable stem cell therapy to repair brain injury or disease by helping stem cells navigate the relative “jungle” of the adult brain, says Dr. Robert K. Yu, director of the Institute of Neuroscience and the Institute for Molecular Medicine and Genetics at the Medical College of Georgia.

“These glycoconjugate markers are like specific addresses that characterize the cell at that particular moment. We call them stage-specific embryonic antigens,” says Dr. Yu of recognition molecules that assist in the unbelievably rapid assemblage of 100 billion to 200 billion cells into a brain in nine months.


The four compounds – two glycolipids, GD3 and O-acetylated GD3, and two glycoproteins, Stage-specific Embryonic Antigen-1 and Human Natural Killer Cell Antigen 1 – were known, but their role in helping cells migrate where and when needed was unknown.

The findings of Dr. Yu, Postdoctoral Fellow Makoto Yanagisawa and Dr. Sean Liour, co-director of MCG’s Human Stem Cell Bank, are being presented during the biannual International Symposium on Glycoconjugates, Sept. 4-9 in Florence, Italy. Dr. Yu is a meeting organizer and is chairing the session on Regulatory Mechanisms for Glycolipid Expression and Intracellular Trafficking.

“We are all sugar-coated, really,” says Dr. Yu, who studies these cell surface molecules that change constantly during development. “There is an abundance of sugar on the cell surface, not only that defines the cell’s properties but also help cells recognize each other and stick together,” he says, noting how like cells bind to form an organ.

During brain formation, for example, cells are constantly changing their sugar face and their function to meet the immediate biological needs. They travel a sort of neuron interstate laid out by the first stem cells formed in development before rapid cell migration and transformation begins. “These ‘interstates’ are called Bergmann glia or glial fibers. They serve as guidance for the neuronal cells to migrate,” Dr. Yu says of the network that is maintained in the adult brain despite the fact that mature neurons don’t really change.

Conditions such as trauma, spinal cord injury and stroke can destroy these travel networks as well as brain cells. Labs such as Dr. Yu’s are doing stem cell transplants to re-establish roadways and get undifferentiated stem cells to repopulate such ravaged areas. He hopes the new developmental markers will help in this effort by showing what cell surface molecules should look like – and consequently how the cells should act – at certain points along the way.

Two of the biggest problems facing stem cell transplantation are functional recovery – getting the cells to do the right job once they arrive at a target organ – and controlling their proliferation so they don’t start forming tumors, says Dr. Yu.

MCG Biochemist Erhard Bieberich is exploring the potential of the lipid ceramide, which helps eliminate potentially harmful cells during brain development, to halt unwanted proliferation of transplanted stem cells.

Dr. Yu hopes the new developmental markers will help with the other problem. “There are other players, but these are important factors that help the brain form. I think it’s a good start. Now that we have these to use as examples, discovery of other markers should come faster.”

The work was funded by the National Institutes of Health, the Children’s Medical Research Foundation in Chicago and the Cerebral Ataxia Association in Taiwan.

Toni Baker | EurekAlert!
Further information:
http://www.mcg.edu

More articles from Life Sciences:

nachricht Symbiotic bacteria: from hitchhiker to beetle bodyguard
28.04.2017 | Johannes Gutenberg-Universität Mainz

nachricht Nose2Brain – Better Therapy for Multiple Sclerosis
28.04.2017 | Fraunhofer-Institut für Grenzflächen- und Bioverfahrenstechnik IGB

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>