Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prenatal Exposure to Marine Toxin Causes Lasting Damage

07.09.2005


Duke University Medical Center researchers have found that the naturally occurring marine toxin domoic acid can cause subtle but lasting cognitive damage in rats exposed to the chemical before birth. Humans can become poisoned by the potentially lethal, algal toxin after eating contaminated shellfish.



The researchers saw behavioral effects of the toxin in animals after prenatal exposure to domoic acid levels below those generally deemed safe for adults, said Edward Levin, Ph.D. Those effects –- including an increased susceptibility to disruptions of memory -- persisted into adulthood, he said.

The findings in rats, therefore, imply that the toxin might negatively affect unborn children at levels that do not cause symptoms in expectant mothers, said Levin. While the researchers note that eating seafood offers significant health benefits, they said their findings suggest that the current threshold of toxin at which affected fisheries are closed should perhaps be lowered. The Federal Drug Administration (FDA) set the current limit based on levels safe for adults, Levin said.


"A single administration of domoic acid to pregnant rats had a lasting affect on the performance of their offspring as adults," Levin said. "The consequences are life-long.

"The findings suggest we may need to re-evaluate monitoring of waters, shellfish and fish to make sure that the most sensitive parts of the human population are protected from toxic exposure to domoic acid," he continued.

The researchers reported their findings in a forthcoming special issue dedicated to research on marine toxins of Neurotoxicology and Teratology.

In 1987, more than 100 people in Canada became ill after eating cultured mussels contaminated with domoic acid. The incident led to three deaths and memory loss in several others.

First detected in the U.S. on the Washington coast in 1991, domoic acid is produced by microscopic algae, specifically the diatom species called Pseudo-nitzschia. When shellfish and crabs ingest the algae, the toxin can become concentrated in their bodies.

Humans eating contaminated seafood develop symptoms including vomiting nausea, diarrhea and abdominal cramps. In severe cases, the toxin leads to neurological damage, characterized by headaches, confusion, coma and even death. Exposure can also cause amnesic shellfish poisoning, characterized by permanent loss of short-term memory.

Since the discovery of domoic acid on the West Coast, officials there collect regular samples of affected marine animals, including razor clams and Dungeness crabs. Fisheries are closed when domoic acid levels reach 20 parts per million (ppm) in the animals’ tissues, the level at which the FDA deems the toxin unsafe for human consumption.

Earlier studies in animals have focused on lethal and highly toxic doses of domoic acid. Such exposures cause extensive damage to the hippocampus, a part of the brain involved in learning and memory. More recent reports examining the effects of a range of doses have found highly reproducible behavioral consequences of sublethal doses of the marine toxin, including impairments to spatial memory.

To explore the toxin’s effects during development, the Duke team administered domoic acid to pregnant rats at three levels -- each below those found to cause convulsions or fetal loss. Others animals did not receive the toxin. The researchers then conducted a battery of behavioral tests on the exposed and normal animals to determine the effects of early domoic acid on movement and working memory.

Rats with a history of domoic acid exposure showed greater initial activity in a maze test than control rats, followed by a rapid decline. Moreover, domoic acid exposure affected cognitive function in complex ways, the researchers reported.

Toxin exposure decreased the normal difference between male and female rats in their ability to complete tasks of spatial memory, the researchers found. Previous research has shown that males normally outperform females on spatial discrimination learning in particular maze tests.

Exposed rats of both sexes also showed greater susceptibility to a chemical that induces amnesia by compromising particular brain receptors, suggesting that the animals had less functional reserve with which to solve memory tasks, the researchers said.

"Brief, low-dose domoic acid exposure in rats during gestational development results in subtle neurobehavioral impairments that persist into adolescence and adulthood," Levin said. "Furthermore, long-lasting effects on locomotor activity and cognitive function occurred at levels having no clinically evident consequences for the animals."

Collaborators on the study include Kristen Pizarro, Wyki Gina Pang and Jerry Harrison, all of Duke. John Ramsdell of the NOAA-National Ocean Service also contributed to the research.

Kendall Morgan | EurekAlert!
Further information:
http://www.duke.edu

More articles from Life Sciences:

nachricht Two Group A Streptococcus genes linked to 'flesh-eating' bacterial infections
25.09.2017 | University of Maryland

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Fraunhofer ISE Pushes World Record for Multicrystalline Silicon Solar Cells to 22.3 Percent

25.09.2017 | Power and Electrical Engineering

Usher syndrome: Gene therapy restores hearing and balance

25.09.2017 | Health and Medicine

An international team of physicists a coherent amplification effect in laser excited dielectrics

25.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>