Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Displaced songbirds navigate in the high Arctic

07.09.2005


By experimentally relocating migratory white-crowned sparrows (Zonotrichia leucophrys gambelii) from their breeding area in the Canadian Northwest Territories to regions at and around the magnetic North Pole, researchers have gained new insight into how birds navigate in the high Arctic. In particular, the findings aid our understanding of how birds might determine longitudinal information--a challenging task, especially at the earth’s poles.



The work is reported in Current Biology by Susanne Åkesson and colleagues at Lund University in Sweden.

Migratory birds navigating over long distances can determine their latitude on the basis of geomagnetic and celestial information, but longitudinal position is much more difficult to determine. In the new work, researchers investigated whether birds can define their longitude after physical displacements in the high Arctic, where the geomagnetic field lines are steep and the midnight sun makes star navigation impossible for much of the summer.


White-crowned sparrows are nocturnally migrating birds that breed in northern Canada and perform long migrations covering a few thousand kilometers to winter in the southern United States. In the study, young and adult white-crowned sparrows were captured with mistnets near Inuvik, NW Territories, Canada, during mid-July to mid-August--the end of the breeding period and shortly before migration--and transported by a Canadian icebreaker along a northeasterly route to nine sites on the tundra, among them the magnetic North Pole (located on Ellef Ringnes Island). The researchers then recorded the birds’ directional orientation in cage experiments.

The scientists found that both adult and juvenile birds abruptly shifted their orientation from the migratory direction to a direction leading back to the breeding area or the normal migratory route, suggesting that the birds began compensating for the west-to-east displacement by using geomagnetic cues alone or in combination with solar cues. The experiments suggest that, in contrast to what would be predicted by a simple genetic-migration program, both adult and juvenile white-crowned sparrows possess a navigation system based on a combination of celestial and geomagnetic information to correct for longitudinal displacements. The results of the study suggest that the birds may in fact use declination--the angle formed between the magnetic North Pole and geographic north--to obtain longitudinal information. Geographic north can be determined by star positions late in the summer, as night returns to the high Arctic.

Heidi Hardman | EurekAlert!
Further information:
http:// www.current-biology.com

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>