Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Displaced songbirds navigate in the high Arctic

07.09.2005


By experimentally relocating migratory white-crowned sparrows (Zonotrichia leucophrys gambelii) from their breeding area in the Canadian Northwest Territories to regions at and around the magnetic North Pole, researchers have gained new insight into how birds navigate in the high Arctic. In particular, the findings aid our understanding of how birds might determine longitudinal information--a challenging task, especially at the earth’s poles.



The work is reported in Current Biology by Susanne Åkesson and colleagues at Lund University in Sweden.

Migratory birds navigating over long distances can determine their latitude on the basis of geomagnetic and celestial information, but longitudinal position is much more difficult to determine. In the new work, researchers investigated whether birds can define their longitude after physical displacements in the high Arctic, where the geomagnetic field lines are steep and the midnight sun makes star navigation impossible for much of the summer.


White-crowned sparrows are nocturnally migrating birds that breed in northern Canada and perform long migrations covering a few thousand kilometers to winter in the southern United States. In the study, young and adult white-crowned sparrows were captured with mistnets near Inuvik, NW Territories, Canada, during mid-July to mid-August--the end of the breeding period and shortly before migration--and transported by a Canadian icebreaker along a northeasterly route to nine sites on the tundra, among them the magnetic North Pole (located on Ellef Ringnes Island). The researchers then recorded the birds’ directional orientation in cage experiments.

The scientists found that both adult and juvenile birds abruptly shifted their orientation from the migratory direction to a direction leading back to the breeding area or the normal migratory route, suggesting that the birds began compensating for the west-to-east displacement by using geomagnetic cues alone or in combination with solar cues. The experiments suggest that, in contrast to what would be predicted by a simple genetic-migration program, both adult and juvenile white-crowned sparrows possess a navigation system based on a combination of celestial and geomagnetic information to correct for longitudinal displacements. The results of the study suggest that the birds may in fact use declination--the angle formed between the magnetic North Pole and geographic north--to obtain longitudinal information. Geographic north can be determined by star positions late in the summer, as night returns to the high Arctic.

Heidi Hardman | EurekAlert!
Further information:
http:// www.current-biology.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>