Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Smoking damages key regulatory enzyme in the lung

07.09.2005


Smoking appears to reduce a key enzyme in the lungs, possibly contributing to some of smoking’s deleterious health effects, according to a study published in the September issue of the Journal of Nuclear Medicine. The study, which used a radiotracer to track the enzyme, also shows that smokers had a lower concentration of the tracer in the bloodstream than nonsmokers did, leading to speculation that smokers and nonsmokers may respond differently to a variety of substances administered by inhalation or intravenously, including therapeutic, anesthetic and addictive drugs.



“The effects of smoking on human health are enormous; yet, little is known about the pharmacologic effects of smoking on the human body apart from the effects of nicotine,” noted Joanna S. Fowler, Ph.D., program director of the Brookhaven Center for Translational Neuroimaging in Upton, N.Y. Researchers from Brookhaven National Laboratory, the National Institute on Drug Abuse and the State University of New York at Stony Brook used positron emission tomography (PET) scanning and a tracer chemical that binds to a specific form of the enzyme monoamine oxidase (MAO A) to track MAO A levels in both smokers and nonsmokers. With whole-body PET imaging, researchers could measure the concentration and movement of the radiotracer and MAO A, a subtype of the enzyme crucial to mood regulation and one that breaks down chemical compounds that elevate blood pressure, said the Society of Nuclear Medicine member.

In the study, “Comparison of Monoamine Oxidase A in Peripheral Organs in Nonsmokers and Smokers,” researchers traced the MAO A subtype in nine smokers and nine nonsmokers, discovering that MAO A was fairly well “intact” in all of the peripheral organs except in smokers’ lungs, said Fowler. Smokers had MAO A levels that were 50 percent lower than in nonsmokers, she said, noting that a prior study had also shown a significant reduction of MAO A in smokers’ brains.


MAO A breaks down many compounds that affect blood pressure, and the lung is a major metabolic organ in degrading some of these compounds, Fowler said. So reduced levels of MAO A in smokers’ lungs may be a significant factor contributing to some of the physiological effects of smoking, including changes in blood pressure and pulmonary function.

Smokers’ lungs also held onto the tracer chemical much longer than nonsmokers, and the delivery of tracer into the arterial blood supply was much lower for smokers, particularly for the first few minutes after being injected, Fowler added. This finding could imply that smokers and nonsmokers respond differently to other substances that enter the body via the bloodstream, including therapeutic drugs, anesthetics, abused substances and environmental agents—even nicotine.

Cigarette smoking, “the most damaging of all addictive substances,” remains the leading cause of preventable death and has negative health impacts on people at all stages of life, said Fowler, and has been in the headlines recently with the death of ABC “World News Tonight” anchorman Peter Jennings. Cigarette smoking accounts for 440,000 deaths each year in the United States, or nearly one of every five deaths, according to the Centers for Disease Control and Prevention. Smoking kills more Americans than AIDS, illegal drugs, alcohol, car accidents, suicides and murders combined and increases one’s chances of developing lung, bladder, esophageal and throat cancers; chronic lung diseases; and coronary heart and cardiovascular diseases.

Fowler and her colleagues have been studying MAO for more than 30 years. The U.S. Department of Energy (DOE) Office of Biological and Environmental Research and the National Institutes of Health have provided funding for this study, said Fowler. She added, “It’s important that the public know about the benefits derived from the DOE’s long-term investments in basic science—especially in radioisotope and radiotracer chemistry and imaging physics—that have played such an important role in introducing new nuclear medicine procedures into the practice of health care.”

“Comparison of Monoamine Oxidase A in Peripheral Organs in Nonsmokers and Smokers” appears in the September issue of the Journal of Nuclear Medicine, which is published by the Society of Nuclear Medicine. Fowler co-authored the article with Jean Logan, Ph.D., Colleen Shea, M.S., Victor Garza, M.S., Youwen Xu, M.S., Yu-Shin Ding, Ph.D., David Alexoff, BSE, and Donald Warner, all with Brookhaven National Laboratory’s chemistry department; Gene-Jack Wang, M.D., Frank Telang, M.D., Noelwah Netusil, RN, Pauline Carter, RN, Millard Jayne, RN, Payton King, M.S, and Paul Vaska, Ph.D., all with Brookhaven National Laboratory’s Medical Department; Nora D. Volkow, M.D., National Institute on Drug Abuse, Bethesda, Md.; Wei Zhu, Ph.D., Department of Applied Mathematics and Statistics, State University of New York at Stony Brook; and Dinko Franceschi, M.D., Department of Radiology, State University of New York at Stony Brook.

Maryann Verrillo | EurekAlert!
Further information:
http://www.snm.org

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>