Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Zebrafish may hold key to improved cancer research

06.09.2005


A new study has confirmed that research done with zebrafish may be able to play a critical role in learning about the genetic basis of cancer and the mutations that can lead to it – and identified one gene in particular, B-myb, whose function is essential to preventing tumors.



The findings were published in a professional journal, Proceedings of the National Academy of Sciences, by researchers from Oregon State University and two Boston hospitals, the Brigham and Women’s Hospital and Children’s Hospital.

The research also indicates that zebrafish may be a key to faster, less expensive studies on cancer and carcinogens, as well as a tool to lower the cost for drug development, OSU experts said.


The first comprehensive cancer research studies using this small, striped tropical fish were begun at OSU over 10 years ago, and the species has become an important tool in medical research programs around the world.

"It’s increasingly clear that in zebrafish we have an animal model that is inexpensive, easy to work with and extremely useful for study of human cancers," said Jan Spitsbergen, a fish pathologist in OSU’s Center for Fish Disease Research. "We’ve now proven that most of the carcinogens that affect humans are also active in zebrafish and can lead to the same types of cancer, whether it’s in the brain, blood, reproductive organs or elsewhere."

The newest finding about the gene B-myb is especially compelling, said Spitsbergen. The B-myb gene has been conserved through hundreds of millions of years of divergent evolution in species ranging from worms to fruit flies, fish and humans.

When it functions normally, B-myb appropriately regulates cell proliferation. When it becomes mutated, either through genetic predisposition or environmental influences, the formation of tumors can dramatically increase, scientists say. The gene appears to be particularly relevant to human leukemias.

OSU’s fish disease research programs date back several decades, and the university first developed the rainbow trout as a useful model for cancer research. Those studies, among others, helped to determine that aflatoxin contaminants which can be found in some foods are a powerful carcinogen – and are still a major cause of liver cancer in some developing nations.

Zebrafish, however, are a fascinating species because the fish embryos are literally transparent and can be directly observed at early developmental stages better than almost any other animal species. They had been used for years in studying everything from the immune system to cardiovascular disease and skeletal development.

In the mid-1990s, OSU researchers began the use of zebrafish in cancer research.

OSU scientists conducted studies on a wide variety of carcinogens and a complete histologic examination of all major organs, the first work of that type. In recent years collaboration has also been extensive with colleagues at the University of Oregon, where the federally funded Zebrafish International Resource Center archives, propagates and distributes the many mutant lines of zebrafish now developed worldwide to aid research on specific genes in development and disease.

This research has proven that the mechanism of cancer prevention in fish is remarkably similar to that of humans, including the genes involved.

"Zebrafish are now changing the face of cancer research," Spitsbergen said. "They can be managed in a laboratory almost anywhere, they reproduce quickly, lend themselves well to genetic manipulation, can efficiently test high numbers of possible drug therapies, and might tell you in three months what it would take two years to find out with other animal models."

"This low cost, efficient research should speed up drug development, save many millions of dollars and help lead to new cancer therapies." Using zebrafish, OSU has extensively studied two groups of carcinogens, polyaromatic hydrocarbons, or PAHs, and nitrosamines. Both of these groups can be produced by normal living activities, ranging from preserved foods to smoking and use of wood stoves. University researchers have also been active in studies on dioxin and PCBs, both concerns in the process of carcinogenesis.

"With zebrafish as a model we should be able to better determine what types and levels of environmental carcinogens are a real health concern," Spitsbergen said. "And we should also be able to rapidly test and develop new approaches to treat cancer."

Jan Spitsbergen | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Start codons in DNA may be more numerous than previously thought

21.02.2017 | Life Sciences

An alternative to opioids? Compound from marine snail is potent pain reliever

21.02.2017 | Life Sciences

Warming ponds could accelerate climate change

21.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>