Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why melanoma is so malignant

05.09.2005


About 60,000 Americans will be diagnosed with melanoma this year, says the American Cancer Society, and 10,000 of those cases will be fatal. If not caught in the early stages, melanoma can be a particularly virulent form of cancer, spreading through the body with an efficiency that few tumors possess. Now, researchers at Whitehead Institute for Biomedical Research have discovered one of the reasons why this particular skin tumor is so ruthless. Unlike other cancers, melanoma is born with its metastatic engines fully revved.



"Other cancers need to learn how to spread, but not melanoma," says Whitehead Member Robert Weinberg, senior author of the paper that will be published September 4 in the early online edition of the journal Nature Genetics. "Now, for the first time, we understand the genetic mechanism responsible for this."

Metastasis (the spread of disease to an unconnected body part) is a highly inefficient, multi-step process that requires cancer cells to jump through many hoops. The cells first must invade a nearby tissue, then make their way into the blood or lymphatic vessels. Next they must migrate through the bloodstream to a distant site, exit the bloodstream, and establish new colonies. Researchers have wondered why melanoma in particular is able to do this not only more efficiently than other cancers, but at a far earlier stage. This new study shows that as melanocytes--cells that protect the skin from sun damage by producing pigmentation--morph into cancer cells, they immediately reawaken a dormant cellular process that lets them travel swiftly throughout the body.


Central to this reawakened process is a gene called Slug (named after the bizarre embryo shape that its mutated form can cause in fruit flies). Slug is active in the neural crest, an early embryonic cluster of cells that eventually gives rise to a variety of cell types in the adult, including dermal melanocytes. In this early embryonic stage, Slug enables the neural crest cells to travel, and then settle, throughout the developing embryo.

"Slug is a key component of the neural crest’s ability to migrate," says Piyush Gupta, a MIT graduate student in Weinberg’s lab and first author on the paper. "Following its activation during embryonic development, Slug is shut off in adult tissues." But when skin cells in, say, an individual’s mole, become malignant, they readily reactivate Slug and gain the ability to spread--something that other cancers can spend decades trying to do.

Weinberg’s team demonstrated this through a number of experiments. In the first, they created models of various cancer types by introducing cancer-causing genes into normal human cells and then injecting the tumor cells underneath the skin of mice. Mice injected with breast cancer cells or with fibroblast (connective tissue) cancer cells developed tumors, but the tumors didn’t spread. Those injected with melanoma cells immediately developed invasive tumors throughout their body, spreading everywhere from the lungs to the spleen. This strongly supported the suspicion that melanoma is so metastatic in part due to properties intrinsic to melanocytes themselves, and not simply because it is external and thus uniquely exposed to environmental stresses.

For the second experiment, the team used microarray technology (chips covered with fragments of DNA that can measure gene levels) and found that Slug was expressed in human melanoma. "Really, this isn’t that surprising," says Gupta, "when you consider that melanocytes in the skin are direct descendants of the neural crest." In fact, Gupta points out that occasionally physicians discover that perfectly benign melanocytes will sometimes manage to migrate through a patient’s body into, say, the lymph nodes. This phenomenon isn’t related to cancer, but rather demonstrates the latent ability of melanocytes to travel

Finally, the research team found that when Slug was knocked out in melanoma cells, the cancer was unable to metastasize when placed into a mouse.

"This work is yet another demonstration of the notion that certain embryonic genes normally involved in transferring cells from one part of the body to another are also involved in enabling cancer cells to spread," says Weinberg, who is also a professor of biology at MIT.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Cryo-electron microscopy achieves unprecedented resolution using new computational methods
24.03.2017 | DOE/Lawrence Berkeley National Laboratory

nachricht How cheetahs stay fit and healthy
24.03.2017 | Forschungsverbund Berlin e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>