Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why melanoma is so malignant

05.09.2005


About 60,000 Americans will be diagnosed with melanoma this year, says the American Cancer Society, and 10,000 of those cases will be fatal. If not caught in the early stages, melanoma can be a particularly virulent form of cancer, spreading through the body with an efficiency that few tumors possess. Now, researchers at Whitehead Institute for Biomedical Research have discovered one of the reasons why this particular skin tumor is so ruthless. Unlike other cancers, melanoma is born with its metastatic engines fully revved.



"Other cancers need to learn how to spread, but not melanoma," says Whitehead Member Robert Weinberg, senior author of the paper that will be published September 4 in the early online edition of the journal Nature Genetics. "Now, for the first time, we understand the genetic mechanism responsible for this."

Metastasis (the spread of disease to an unconnected body part) is a highly inefficient, multi-step process that requires cancer cells to jump through many hoops. The cells first must invade a nearby tissue, then make their way into the blood or lymphatic vessels. Next they must migrate through the bloodstream to a distant site, exit the bloodstream, and establish new colonies. Researchers have wondered why melanoma in particular is able to do this not only more efficiently than other cancers, but at a far earlier stage. This new study shows that as melanocytes--cells that protect the skin from sun damage by producing pigmentation--morph into cancer cells, they immediately reawaken a dormant cellular process that lets them travel swiftly throughout the body.


Central to this reawakened process is a gene called Slug (named after the bizarre embryo shape that its mutated form can cause in fruit flies). Slug is active in the neural crest, an early embryonic cluster of cells that eventually gives rise to a variety of cell types in the adult, including dermal melanocytes. In this early embryonic stage, Slug enables the neural crest cells to travel, and then settle, throughout the developing embryo.

"Slug is a key component of the neural crest’s ability to migrate," says Piyush Gupta, a MIT graduate student in Weinberg’s lab and first author on the paper. "Following its activation during embryonic development, Slug is shut off in adult tissues." But when skin cells in, say, an individual’s mole, become malignant, they readily reactivate Slug and gain the ability to spread--something that other cancers can spend decades trying to do.

Weinberg’s team demonstrated this through a number of experiments. In the first, they created models of various cancer types by introducing cancer-causing genes into normal human cells and then injecting the tumor cells underneath the skin of mice. Mice injected with breast cancer cells or with fibroblast (connective tissue) cancer cells developed tumors, but the tumors didn’t spread. Those injected with melanoma cells immediately developed invasive tumors throughout their body, spreading everywhere from the lungs to the spleen. This strongly supported the suspicion that melanoma is so metastatic in part due to properties intrinsic to melanocytes themselves, and not simply because it is external and thus uniquely exposed to environmental stresses.

For the second experiment, the team used microarray technology (chips covered with fragments of DNA that can measure gene levels) and found that Slug was expressed in human melanoma. "Really, this isn’t that surprising," says Gupta, "when you consider that melanocytes in the skin are direct descendants of the neural crest." In fact, Gupta points out that occasionally physicians discover that perfectly benign melanocytes will sometimes manage to migrate through a patient’s body into, say, the lymph nodes. This phenomenon isn’t related to cancer, but rather demonstrates the latent ability of melanocytes to travel

Finally, the research team found that when Slug was knocked out in melanoma cells, the cancer was unable to metastasize when placed into a mouse.

"This work is yet another demonstration of the notion that certain embryonic genes normally involved in transferring cells from one part of the body to another are also involved in enabling cancer cells to spread," says Weinberg, who is also a professor of biology at MIT.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Fine organic particles in the atmosphere are more often solid glass beads than liquid oil droplets
21.04.2017 | Max-Planck-Institut für Chemie

nachricht Study overturns seminal research about the developing nervous system
21.04.2017 | University of California - Los Angeles Health Sciences

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

Im Focus: Quantum-physical Model System

Computer-assisted methods aid Heidelberg physicists in reproducing experiment with ultracold atoms

Two researchers at Heidelberg University have developed a model system that enables a better understanding of the processes in a quantum-physical experiment...

Im Focus: Glacier bacteria’s contribution to carbon cycling

Glaciers might seem rather inhospitable environments. However, they are home to a diverse and vibrant microbial community. It’s becoming increasingly clear that they play a bigger role in the carbon cycle than previously thought.

A new study, now published in the journal Nature Geoscience, shows how microbial communities in melting glaciers contribute to the Earth’s carbon cycle, a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

New quantum liquid crystals may play role in future of computers

21.04.2017 | Physics and Astronomy

A promising target for kidney fibrosis

21.04.2017 | Health and Medicine

Light rays from a supernova bent by the curvature of space-time around a galaxy

21.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>