Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers discover why melanoma is so malignant

05.09.2005


About 60,000 Americans will be diagnosed with melanoma this year, says the American Cancer Society, and 10,000 of those cases will be fatal. If not caught in the early stages, melanoma can be a particularly virulent form of cancer, spreading through the body with an efficiency that few tumors possess. Now, researchers at Whitehead Institute for Biomedical Research have discovered one of the reasons why this particular skin tumor is so ruthless. Unlike other cancers, melanoma is born with its metastatic engines fully revved.



"Other cancers need to learn how to spread, but not melanoma," says Whitehead Member Robert Weinberg, senior author of the paper that will be published September 4 in the early online edition of the journal Nature Genetics. "Now, for the first time, we understand the genetic mechanism responsible for this."

Metastasis (the spread of disease to an unconnected body part) is a highly inefficient, multi-step process that requires cancer cells to jump through many hoops. The cells first must invade a nearby tissue, then make their way into the blood or lymphatic vessels. Next they must migrate through the bloodstream to a distant site, exit the bloodstream, and establish new colonies. Researchers have wondered why melanoma in particular is able to do this not only more efficiently than other cancers, but at a far earlier stage. This new study shows that as melanocytes--cells that protect the skin from sun damage by producing pigmentation--morph into cancer cells, they immediately reawaken a dormant cellular process that lets them travel swiftly throughout the body.


Central to this reawakened process is a gene called Slug (named after the bizarre embryo shape that its mutated form can cause in fruit flies). Slug is active in the neural crest, an early embryonic cluster of cells that eventually gives rise to a variety of cell types in the adult, including dermal melanocytes. In this early embryonic stage, Slug enables the neural crest cells to travel, and then settle, throughout the developing embryo.

"Slug is a key component of the neural crest’s ability to migrate," says Piyush Gupta, a MIT graduate student in Weinberg’s lab and first author on the paper. "Following its activation during embryonic development, Slug is shut off in adult tissues." But when skin cells in, say, an individual’s mole, become malignant, they readily reactivate Slug and gain the ability to spread--something that other cancers can spend decades trying to do.

Weinberg’s team demonstrated this through a number of experiments. In the first, they created models of various cancer types by introducing cancer-causing genes into normal human cells and then injecting the tumor cells underneath the skin of mice. Mice injected with breast cancer cells or with fibroblast (connective tissue) cancer cells developed tumors, but the tumors didn’t spread. Those injected with melanoma cells immediately developed invasive tumors throughout their body, spreading everywhere from the lungs to the spleen. This strongly supported the suspicion that melanoma is so metastatic in part due to properties intrinsic to melanocytes themselves, and not simply because it is external and thus uniquely exposed to environmental stresses.

For the second experiment, the team used microarray technology (chips covered with fragments of DNA that can measure gene levels) and found that Slug was expressed in human melanoma. "Really, this isn’t that surprising," says Gupta, "when you consider that melanocytes in the skin are direct descendants of the neural crest." In fact, Gupta points out that occasionally physicians discover that perfectly benign melanocytes will sometimes manage to migrate through a patient’s body into, say, the lymph nodes. This phenomenon isn’t related to cancer, but rather demonstrates the latent ability of melanocytes to travel

Finally, the research team found that when Slug was knocked out in melanoma cells, the cancer was unable to metastasize when placed into a mouse.

"This work is yet another demonstration of the notion that certain embryonic genes normally involved in transferring cells from one part of the body to another are also involved in enabling cancer cells to spread," says Weinberg, who is also a professor of biology at MIT.

David Cameron | EurekAlert!
Further information:
http://www.wi.mit.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>