Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery will aid identification of misregulated genes in Rett Syndrome

02.09.2005


Adrian Bird of the University of Edinburgh and colleagues report today in the online issue of Molecular Cell that the "Rett Syndrome protein", MeCP2, only binds to genes with a specific sequence of nucleotide bases. This knowledge will aid in the identification of the genes that are regulated by the gene MECP2. This work was supported, in part, by the Rett Syndrome Research Foundation (RSRF).



Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

The instructions needed to make the cells of all living organisms are contained in their DNA, which is organized as two complementary strands with bonds between them that can be "unzipped" like a zipper. DNA is encoded with building blocks called bases which can be abbreviated A, T, C, G. Each base "pairs up" with only one other base: A-T, T-A, C-G, G-C create the bonds that connect the complementary strands. Long stretches of base pairs make up genes.


All genes found in the human body are present in every one of our cells. What allows the same cells to develop into a heart in one instance and a kidney in another? The answer is gene expression. In a typical human cell only one tenth of the genes are expressed; the rest are shut down.

One way that genes are shut down is by attaching a small "tag" called a methyl group to the C base. The number and placement of the methyl tags dictates when a gene should be silenced. The protein, MeCP2, binds to these methyl groups to silence particular genes.

Dr. Bird and colleagues found that the methyl groups alone were not enough to attract MeCP2 to a gene. In fact, what is needed is a stretch of at least four A-T bases flanking the methyl groups.

"We previously thought that MeCP2 only needed methyl groups to bind DNA. As there are about 30 million such sites in the genome, it seemed likely that MeCP2 was a rather indiscriminate repressor of gene expression all over the genome. The new data shows that the number of potential MeCP2 binding sites is in fact far less than we thought, making it easier to find new target genes that are mis-regulated in Rett Syndrome," said Adrian Bird.

Researchers hypothesize that the devastating cascade of symptoms seen in Rett Syndrome is caused by the inability of mutated MeCP2 to silence its target genes. To date, the genes DLX5 and BDNF have emerged as strong MeCP2 target candidates and are therefore implicated in the disease process of Rett Syndrome. Interestingly, both genes were found to have the required A-T stretch, strengthening the argument that MeCP2 is involved in regulating these genes.

"Finding the MeCP2 target genes is a crucial step in understanding what goes awry in Rett Syndrome. Unfortunately these genes have been elusive. Dr. Bird’s discovery of the A-T stretch provides a much-needed clue which should aid in their identification," said Monica Coenraads, Director of Research for RSRF.

Monica Coenraads | EurekAlert!
Further information:
http://www.rsrf.org

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>