Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Discovery will aid identification of misregulated genes in Rett Syndrome


Adrian Bird of the University of Edinburgh and colleagues report today in the online issue of Molecular Cell that the "Rett Syndrome protein", MeCP2, only binds to genes with a specific sequence of nucleotide bases. This knowledge will aid in the identification of the genes that are regulated by the gene MECP2. This work was supported, in part, by the Rett Syndrome Research Foundation (RSRF).

Rett Syndrome (RTT) is a severe neurological disorder diagnosed almost exclusively in girls. Children with RTT appear to develop normally until 6 to 18 months of age, when they enter a period of regression, losing speech and motor skills. Most develop repetitive hand movements, irregular breathing patterns, seizures and extreme motor control problems. RTT leaves its victims profoundly disabled, requiring maximum assistance with every aspect of daily living. There is no cure.

The instructions needed to make the cells of all living organisms are contained in their DNA, which is organized as two complementary strands with bonds between them that can be "unzipped" like a zipper. DNA is encoded with building blocks called bases which can be abbreviated A, T, C, G. Each base "pairs up" with only one other base: A-T, T-A, C-G, G-C create the bonds that connect the complementary strands. Long stretches of base pairs make up genes.

All genes found in the human body are present in every one of our cells. What allows the same cells to develop into a heart in one instance and a kidney in another? The answer is gene expression. In a typical human cell only one tenth of the genes are expressed; the rest are shut down.

One way that genes are shut down is by attaching a small "tag" called a methyl group to the C base. The number and placement of the methyl tags dictates when a gene should be silenced. The protein, MeCP2, binds to these methyl groups to silence particular genes.

Dr. Bird and colleagues found that the methyl groups alone were not enough to attract MeCP2 to a gene. In fact, what is needed is a stretch of at least four A-T bases flanking the methyl groups.

"We previously thought that MeCP2 only needed methyl groups to bind DNA. As there are about 30 million such sites in the genome, it seemed likely that MeCP2 was a rather indiscriminate repressor of gene expression all over the genome. The new data shows that the number of potential MeCP2 binding sites is in fact far less than we thought, making it easier to find new target genes that are mis-regulated in Rett Syndrome," said Adrian Bird.

Researchers hypothesize that the devastating cascade of symptoms seen in Rett Syndrome is caused by the inability of mutated MeCP2 to silence its target genes. To date, the genes DLX5 and BDNF have emerged as strong MeCP2 target candidates and are therefore implicated in the disease process of Rett Syndrome. Interestingly, both genes were found to have the required A-T stretch, strengthening the argument that MeCP2 is involved in regulating these genes.

"Finding the MeCP2 target genes is a crucial step in understanding what goes awry in Rett Syndrome. Unfortunately these genes have been elusive. Dr. Bird’s discovery of the A-T stretch provides a much-needed clue which should aid in their identification," said Monica Coenraads, Director of Research for RSRF.

Monica Coenraads | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>