Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells known as macrophages linked to growth of lymph vessels in eyes, scientists discover

02.09.2005


Holds promise for treating eye disease and cancer and for healing injuries



Scientists at Schepens Eye Research Institute have discovered that a particular immune cell contributes to the growth of new lymph vessels, which aid in healing. This cell, known as a macrophage, is called in by the body during the wound healing process. The discovery of this new role for the macrophage, published in the September 2005 Journal of Clinical Investigation, may ultimately inspire innovative treatments for blinding eye disease, as well as for other diseases, such as cancer, that rely on the lymph vessels to spread abnormal cells throughout the body.

"This is a very significant finding," according to Joan Stein-Streilein, PhD, and Patricia A. D’Amore, PhD, senior authors of the study, Senior Scientists at SERI and members of the Departments of Medicine and Ophthalmology at Harvard Medical School, respectively. "It unlocks a whole new dimension in our understanding of these important cells."


The body uses lymph vessels to bring immune cells to an injured organ to carry away debris and fluid to aid healing. Lymph vessels can play a different kind of role in cancer, offering tumor cells a pathway for spreading to other body parts, in a process known as metastasis.

Macrophages are large white blood cells called in during wound healing to ingest foreign invaders such as bacteria. They can also present pieces of those intruders to the immune system to jump-start the immune response. Produced in the bone marrow, they can be found in almost all tissues of the body. Unlike many other parts of the body, the clear outer layer of the eye, known as the cornea, does not normally have lymph vessels, except when injury causes lymph vessels to sprout from the edge of the cornea to help heal the wound.

Dr. Kazuichi Maruyama, a post-doctoral fellow in D’Amore’s and Stein-Streilein’s laboratories at SERI, began to suspect a new connection between macrophages and lymph vessels while studying corneal transplants in mice. He became aware of lymph vessels that seemed to be forming "in place," away from those produced at the edge of the cornea. He also noticed that these lymph vessels disappeared after the wounds were healed. Because the cell structure of the new vessels resembled that of macrophages, he began to believe there might be a relationship.

In the JCI study, he tested this idea by placing sutures in the corneas of two groups of mice to create injuries that would induce a healing response. Then he gave one group of mice a drug to cause macrophages to commit suicide. When he examined the eyes of both groups, he found those given the drug did not grow as many lymph vessels as the control group without the drug.

The implications of this link between macrophages and lymph vessels are far-reaching, according to Stein-Streilein, D’Amore, and Maruyama.

D’Amore and Stein-Streilein believe that harnessing this newly found ability of the macrophages could lead to the creation of new drugs or therapies for eye disease. For instance, inducing new "temporary" lymph vessels in retinas could aid in treating diabetic retinopathy by removing fluids leaking from abnormal blood vessels. It is this leaking fluid, characteristic of diabetic retinopathy that can permanently damage the retina and vision.

Maruyama speculates that the involvement of macrophages in forming lymph vessels may be universal and may also be involved in spreading cancer. If that were the case, blocking macrophages from helping to grow lymph vessels could inhibit the spread of tumors.

The team is now researching the same process in skin wounds and cancer.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/

More articles from Life Sciences:

nachricht Kidney tumor: Genetic trigger discovered
18.06.2018 | Julius-Maximilians-Universität Würzburg

nachricht New type of photosynthesis discovered
18.06.2018 | Imperial College London

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

Im Focus: Water is not the same as water

Water molecules exist in two different forms with almost identical physical properties. For the first time, researchers have succeeded in separating the two forms to show that they can exhibit different chemical reactivities. These results were reported by researchers from the University of Basel and their colleagues in Hamburg in the scientific journal Nature Communications.

From a chemical perspective, water is a molecule in which a single oxygen atom is linked to two hydrogen atoms. It is less well known that water exists in two...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Novel method for investigating pore geometry in rocks

18.06.2018 | Earth Sciences

Diamond watch components

18.06.2018 | Process Engineering

New type of photosynthesis discovered

18.06.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>