Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Immune cells known as macrophages linked to growth of lymph vessels in eyes, scientists discover

02.09.2005


Holds promise for treating eye disease and cancer and for healing injuries



Scientists at Schepens Eye Research Institute have discovered that a particular immune cell contributes to the growth of new lymph vessels, which aid in healing. This cell, known as a macrophage, is called in by the body during the wound healing process. The discovery of this new role for the macrophage, published in the September 2005 Journal of Clinical Investigation, may ultimately inspire innovative treatments for blinding eye disease, as well as for other diseases, such as cancer, that rely on the lymph vessels to spread abnormal cells throughout the body.

"This is a very significant finding," according to Joan Stein-Streilein, PhD, and Patricia A. D’Amore, PhD, senior authors of the study, Senior Scientists at SERI and members of the Departments of Medicine and Ophthalmology at Harvard Medical School, respectively. "It unlocks a whole new dimension in our understanding of these important cells."


The body uses lymph vessels to bring immune cells to an injured organ to carry away debris and fluid to aid healing. Lymph vessels can play a different kind of role in cancer, offering tumor cells a pathway for spreading to other body parts, in a process known as metastasis.

Macrophages are large white blood cells called in during wound healing to ingest foreign invaders such as bacteria. They can also present pieces of those intruders to the immune system to jump-start the immune response. Produced in the bone marrow, they can be found in almost all tissues of the body. Unlike many other parts of the body, the clear outer layer of the eye, known as the cornea, does not normally have lymph vessels, except when injury causes lymph vessels to sprout from the edge of the cornea to help heal the wound.

Dr. Kazuichi Maruyama, a post-doctoral fellow in D’Amore’s and Stein-Streilein’s laboratories at SERI, began to suspect a new connection between macrophages and lymph vessels while studying corneal transplants in mice. He became aware of lymph vessels that seemed to be forming "in place," away from those produced at the edge of the cornea. He also noticed that these lymph vessels disappeared after the wounds were healed. Because the cell structure of the new vessels resembled that of macrophages, he began to believe there might be a relationship.

In the JCI study, he tested this idea by placing sutures in the corneas of two groups of mice to create injuries that would induce a healing response. Then he gave one group of mice a drug to cause macrophages to commit suicide. When he examined the eyes of both groups, he found those given the drug did not grow as many lymph vessels as the control group without the drug.

The implications of this link between macrophages and lymph vessels are far-reaching, according to Stein-Streilein, D’Amore, and Maruyama.

D’Amore and Stein-Streilein believe that harnessing this newly found ability of the macrophages could lead to the creation of new drugs or therapies for eye disease. For instance, inducing new "temporary" lymph vessels in retinas could aid in treating diabetic retinopathy by removing fluids leaking from abnormal blood vessels. It is this leaking fluid, characteristic of diabetic retinopathy that can permanently damage the retina and vision.

Maruyama speculates that the involvement of macrophages in forming lymph vessels may be universal and may also be involved in spreading cancer. If that were the case, blocking macrophages from helping to grow lymph vessels could inhibit the spread of tumors.

The team is now researching the same process in skin wounds and cancer.

Patti Jacobs | EurekAlert!
Further information:
http://www.eri.harvard.edu/

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>