Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Prostate cancer uses Wnt signaling proteins to promote growth of bone tumors

02.09.2005


Prostate cancer is a cruel disease. Left untreated, prostate cancer cells often metastasize, or spread, to bone where they form fracture-prone tumors that are extremely painful.



More than 80 percent of men who die from prostate cancer die with metastatic disease in their bones. But scientists know very little about how migrating prostate cancer cells set up housekeeping in bone tissue and produce the dense bony lesions characteristic of prostate cancer.

Now, new research by scientists at the University of Michigan’s Comprehensive Cancer Center suggests that prostate cancer manipulates an important group of signaling proteins called Wnts (pronounced "wints") to establish itself in bone. By changing the amount and activity of Wnt proteins, prostate cancer cells upset the normal balance between formation and destruction of bony tissue.


"There is strong evidence that Wnt proteins play a central role in regulating normal skeletal development in an embryo," says Christopher L. Hall, Ph.D., a senior research fellow in urology at U-M. "But this is the first time Wnts have been shown to be involved in abnormal bone production in adult animals with prostate cancer."

Hall is first author of a paper to be published in the Sept. 1 issue of Cancer Research, which presents results from U-M studies of Wnt proteins in human prostate cancer cell lines and in laboratory mice injected with prostate cancer cells.

"Normal bone growth and remodeling depends on a controlled balance between production of new bone and resorption of existing bone," says Evan T. Keller, D.V.M., Ph.D., a professor of urology and pathology in the U-M Medical School, who directed the U-M study. "When a tumor forms in bone, it upsets this balance."

Several types of cancer metastasize to bone, according to Keller, but most of them tip the balance toward destruction – producing what scientists call osteolytic lesions, or holes in the bone. Prostate cancer is unique in its ability to trigger increased bone production, which creates what’s called an osteoblastic lesion.

"In metastatic prostate cancer, we think that both processes are going on," Keller says. "Our hypothesis is that prostate cancer cells first induce more bone resorption to help the invading cells become established in bone. But then there’s a switch to increased bone production. Although we don’t know the exact mechanism responsible for the switch, we know that it’s related to the activity of Wnt proteins in prostate cancer cells."

In the first phase of their research, U-M scientists measured the amount of Wnt protein in cells from normal human prostate tissue, localized prostate cancer and metastatic prostate cancer cells. Using the same cell lines, they also looked for the presence of a protein called DKK-1, which is known to inhibit Wnt activity. They discovered that the amounts of Wnt and DKK-1 protein present in human prostate cells varied inversely with the developmental stage of prostate cancer.

"As the cancer progressed, DKK-1 levels went down," Hall says. "Cells with osteoblastic activity had high levels of Wnt activity and low levels of DKK-1, while cells with osteolytic activity showed decreased Wnt activity and high levels of DKK-1."

"Our results suggest that DKK-1 may act like a switch on prostate cancer cell activity," Keller says. "When we altered the cells to increase the amount of active DKK-1, it blocked Wnt’s signal, changing prostate cancer cells from an osteoblastic to a highly osteolytic cell line."

To test their hypothesis, U-M scientists injected human prostate cancer cells into the tibias, or long leg bones, of one group of immune-deficient mice. Twelve weeks later, U-M researchers removed and examined bone tumors from the mice. They found that these mice produced tumors with a dense overgrowth of bone. A second group of mice, injected with prostate cancer cells made to express the Wnt inhibitor, DKK-1, developed highly osteolytic tumor lesions, which destroyed most of the bone.

"This demonstrated that Wnts promote the overproduction of bone by prostate cancer cells," Keller says.

In previous research, the U-M team found that preventing the osteolytic changes associated with bone resorption also prevented prostate cancer from establishing itself in bone. By learning how DKK-1 blocks Wnt’s signal to prostate cancer cells, they hope to learn how to control physical changes in bone that encourage the development of metastatic tumors.

"Our goal is to find ways to manipulate this Wnt pathway to slow the growth of tumors in bone or decrease the tumor-associated pain," Keller says. "We won’t be able to stop the primary tumor from releasing cells, but by preventing early bone resorption, we may be able to prevent metastatic cells from getting a foothold in bone."

In future research, U-M scientists will try to identify which of the nearly 20 known Wnt proteins is involved in bone changes associated with metastatic prostate cancer.

Sally Pobojewski | EurekAlert!
Further information:
http://www.umich.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>