Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers identify molecular anchor that allows bacterial invasion of central nervous system

02.09.2005


Could be target to block CNS infection



A single molecular anchor that allows bacteria to invade the nervous system may hold the key to treating many types of bacterial meningitis, a University of California, San Diego (UCSD) School of Medicine study has found.

By blocking the molecule’s anchoring ability, researchers may be able to find a way to stave off the most common serious infection of the central nervous system and a major cause of childhood death and disability. The researchers’ findings appear in the September 2005 issue of the Journal of Clinical Investigation.


Kelly Doran, Ph.D, assistant professor of pediatrics, Victor Nizet, M.D., associate professor of pediatrics, and their colleagues have identified a gene that produces a fat-sugar complex, which in turn anchors a molecule called LTA (short for lipoteichoic acid), found on the bacterial cell wall. This anchoring is a necessary first step for bacteria to cross from the bloodstream into the central nervous system through an anatomical obstacle called the blood-brain barrier.

"Streptococcus, which can cause meningitis, has to penetrate the normally impermeable blood-brain barrier in order to enter the central nervous system and cause disease," said Doran. "How this happens is not well known for bacteria. We wanted to see how bacteria interact with blood-brain barrier cells to begin the process of crossing over into the nervous system."

The team began by looking for new bacterial genes that allowed them to penetrate the barrier. Through a process that involved generating and screening thousands of Streptococcus mutants in a laboratory model of the human blood-brain barrier, the researchers found that a gene called iagA (short for invasion association gene-A) played a central role.

By producing a fat-sugar complex that anchors LTA, iagA establishes a link that allows bacteria to begin making its way into the nervous system. The researchers found that removing the iagA gene from the Streptococcus inhibited bacterial interactions with the blood-brain barrier, reducing mortality rates up to 90 percent in mice.

"Mice that were infected with the normal, or wild-type, Streptococcus bacteria containing iagA died within days showing evidence of bacterial meningitis. In contrast, most of the mice survived when infected with bacteria missing the single iagA gene," Doran said. "Blocking the anchoring of LTA on the bacterial cell surface could become new a therapeutic target for preventing bacterial meningitis."

Doran and Nizet noted that the study focused on how bacteria can begin the invasion process, and that additional Streptococcus toxins and the body’s own immune response also contribute to the development of meningitis. In their ongoing efforts, the researchers are looking at all of these factors in order to paint a complete picture of how the bacteria invade the brain and spinal cord to produce this potentially devastating infection.

Bacterial meningitis must be treated quickly and aggressively with antibiotics, since up to 25 percent of affected children may die or suffer permanent cognitive deficits, cerebral palsy, blindness, deafness or seizures. Therefore, an early acting treatment would help reduce the high rates of disability and death.

"Previous studies have found that Streptococcus bacteria from infants with serious disease have significantly higher levels of LTA than bacterial strains in infants without symptoms," Nizet said. "This underscores the importance of this anchor-LTA interaction, as well as its potential importance as a drug target."

The researchers’ work was supported by the Burroughs Wellcome Fund, the American Heart Association, the Edward J. Mallinckrodt, Jr., Foundation, the United Cerebral Palsy Research Foundation and the National Institutes of Health.

Doran and Nizet’s colleagues include Erin Engelson, Arya Khosravi and Heather Maisey of UCSD; Iris Fedtke and Andreas Peschel of the University of Tübingen, Germany, and Ozlem Equils, Kathrin Michelsen, and Moshe Arditi of Cedars-Sinai Medical Center, Los Angeles.

Debra Kain | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht At last, butterflies get a bigger, better evolutionary tree
16.02.2018 | Florida Museum of Natural History

nachricht New treatment strategies for chronic kidney disease from the animal kingdom
16.02.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

Im Focus: Autonomous 3D scanner supports individual manufacturing processes

Let’s say the armrest is broken in your vintage car. As things stand, you would need a lot of luck and persistence to find the right spare part. But in the world of Industrie 4.0 and production with batch sizes of one, you can simply scan the armrest and print it out. This is made possible by the first ever 3D scanner capable of working autonomously and in real time. The autonomous scanning system will be on display at the Hannover Messe Preview on February 6 and at the Hannover Messe proper from April 23 to 27, 2018 (Hall 6, Booth A30).

Part of the charm of vintage cars is that they stopped making them long ago, so it is special when you do see one out on the roads. If something breaks or...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Fingerprints of quantum entanglement

16.02.2018 | Information Technology

'Living bandages': NUST MISIS scientists develop biocompatible anti-burn nanofibers

16.02.2018 | Health and Medicine

Hubble sees Neptune's mysterious shrinking storm

16.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>