Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New bacterial gene provides meningitis mechanism

02.09.2005


Editor’s Pick

Bacterial meningitis is the most common nervous system infection and a major cause of childhood death. In a new study appearing in the September 1 print issue of The Journal of Clinical Investigation, Kelly Doran and colleagues from UCSD investigate the mechanisms responsible for the penetration of the human blood-brain barrier (BBB) by Group B Streptococcus (GBS), the bacteria that causes meningitis in newborn infants.

The authors find a novel GBS gene, called iagA, which helps the bacteria invade the normally shield-like brain endothelial cells of the BBB. An iagA mutant showed decreased invasion through these cells and reduced the development of meningitis and lethality in vivo. Deletion of iagA did not affect other key steps in the pathogenesis of GBS meningitis, including bacterial survival. Thus iagA specifically promotes endothelial cell uptake of the pathogen. The iagA gene product seems to synthesize a glycolipid anchor that facilitates the bacteria’s interaction with the host cell.



In an accompanying commentary, Miriam Baron and Dennis Kaspar write, "this work contributes to our understanding of the molecular pathogenesis of invasive GBS infection. Specifically, the identification of the iagA gene product as a major contributor to GBS invasion and virulence is an exciting development."

TITLE: Group B Streptococcus Blood-Brain Barrier Invasion Depends Upon Proper Cell Surface Anchoring of Lipoteichoic Acid

Stacie Bloom | EurekAlert!
Further information:
http://www.the-jci.org

More articles from Life Sciences:

nachricht Embryonic development: How do limbs develop from cells?
18.05.2018 | Humboldt-Universität zu Berlin

nachricht Reading histone modifications, an oncoprotein is modified in return
18.05.2018 | American Society for Biochemistry and Molecular Biology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

Im Focus: Entangled atoms shine in unison

A team led by Austrian experimental physicist Rainer Blatt has succeeded in characterizing the quantum entanglement of two spatially separated atoms by observing their light emission. This fundamental demonstration could lead to the development of highly sensitive optical gradiometers for the precise measurement of the gravitational field or the earth's magnetic field.

The age of quantum technology has long been heralded. Decades of research into the quantum world have led to the development of methods that make it possible...

Im Focus: Computer-Designed Customized Regenerative Heart Valves

Cardiovascular tissue engineering aims to treat heart disease with prostheses that grow and regenerate. Now, researchers from the University of Zurich, the Technical University Eindhoven and the Charité Berlin have successfully implanted regenerative heart valves, designed with the aid of computer simulations, into sheep for the first time.

Producing living tissue or organs based on human cells is one of the main research fields in regenerative medicine. Tissue engineering, which involves growing...

Im Focus: Light-induced superconductivity under high pressure

A team of scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg investigated optically-induced superconductivity in the alkali-doped fulleride K3C60under high external pressures. This study allowed, on one hand, to uniquely assess the nature of the transient state as a superconducting phase. In addition, it unveiled the possibility to induce superconductivity in K3C60 at temperatures far above the -170 degrees Celsius hypothesized previously, and rather all the way to room temperature. The paper by Cantaluppi et al has been published in Nature Physics.

Unlike ordinary metals, superconductors have the unique capability of transporting electrical currents without any loss. Nowadays, their technological...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

Supersonic waves may help electronics beat the heat

18.05.2018 | Power and Electrical Engineering

Keeping a Close Eye on Ice Loss

18.05.2018 | Information Technology

CrowdWater: An App for Flood Research

18.05.2018 | Information Technology

VideoLinks
Science & Research
Overview of more VideoLinks >>>