Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Four-legged fish an evolutionary mistake

02.09.2005


The ”four-legged fish” Ichthyostega is not the ”missing link” between marine and land animals, but rather one of several short-lived ”experiments”. This is what scientists from Uppsala and Cambridge universities maintain in an article in the latest issue of the scientific journal Nature.



The ”four-legged fish” Ichthyostega lived in Greenland during the Devon Period, some 355 million years ago, and is one of the very oldest land vertebrates. Since it was discovered back in the 1930s, and nearly the entire skeleton has been preserved, it quickly acquired iconic status as the ”missing link” between fish and land animals. Now a Swedish-British research team is presenting a new reconstruction of this classic animal that paints a radically different picture of its body shape and life style.

It isn´t easy to interpret the fossil of Ichthyostega. Even though almost the whole skeleton is represented, there is no single fossil that shows the whole animal. Instead it is necessary to assemble a puzzle from information found in several different fossils. This was first done in the 1950s by Professor Erik Jarvik at the Museum of Natural History in Stockholm, who reconstructed the animal with a crocodile-like body standing on four sturdy legs, with a large torso and a simple backbone made up of identical vertebrae. However, for the last five years a research team from Uppsala and Cambridge has been piecing together another interpretation.


- We discovered that the vertebrae are not at all identical, but differ depending on where in the body they were located. Moreover, the torso is differently shaped than Jarvik thought, and the hind legs look more like the flippers of a seal, says Professor Per Ahlberg of Uppsala University.

The new reconstruction assigns Ichthyostega a backbone that resembles that of a mammal-surprising for such an early land animal. This means that Ichthyostega had an unusual pattern of locomotion. Both fish and primitive now-living land animals, such as salamanders and lizards, move by slithering their bodies sideways. This also seems to be the case for Acanthostega, the other (and more primitive) four-legged fish from Greenland in the Devon Period. But Ichthyostega‚s large torso, with ribs that overlap like roofing tiles, made its upper body completely stiff, and the hind quarters seem rather to be adapted to flexing vertically, as in mammals.

- Ichthyostega probably moved rather clumsily on land by lifting its upper body and ”walking” on its front legs while simultaneously floundering along on its hind flippers. Its also possible that it combined with this a vertical bending of the spine to slide forward something like a giant inchworm, says Per Ahlberg, who maintains that Ichthyostega is not the ”missing link” but rather one of several short-lived evolutionary experiments with various bodily shapes and patterns of locomotion during the transitional period from marine to land life.

Anneli Waara | alfa
Further information:
http://www.uu.se
http://www.nature.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>