Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find drug that blocks spread of lung cancer in mice

01.09.2005


Researchers at UT Southwestern Medical Center have found a compound that shows promise as a way to block the spread, or metastasis, of lung cancer.



The researchers found that the compound blocks an enzyme that is known to keep cells immortal and that is implicated in almost all human cancers. From results in mice, they determined that the compound, called GRN163L, also works rapidly and in doses that would be reasonable for therapy. It may be particularly useful after surgery or in combination with chemotherapy or radiotherapy to prevent residual cancer cells from spreading.

"We showed for the first time that this drug can work in animals," said Dr. Jerry Shay, professor of cell biology at UT Southwestern and senior author of the study, which appears in the September issue of the journal Cancer Research.


Lung cancer is the leading cause of cancer death, killing more people than breast cancer, prostate cancer and colon cancer combined, according to the American Cancer Society.

Lung adenocarcinoma accounts for about 40 percent of lung cancers. Its rate is increasing worldwide, Dr. Shay said, and survival rates are poor because the disease metastasizes, usually by the time treatment begins in most cases.

The researchers designed, synthesized and tested GRN163L, which consists of 13 nucleotides, the units that make up DNA, plus a fatty section that improves the rate at which cells take it in.

GRN163L specifically matches a stretch of DNA at the end of the chromosome, a segment called the telomere. Normally, as cells divide and age, telomeres become shorter and shorter. When they reach a certain length, the cells stop dividing.

But the telomeres in cancerous cells stay the same length, thanks to an enzyme called telomerase. The gene that creates telomerase is active in about 85 percent to 90 percent of tumors and in only a few noncancerous cells.

"Telomerase is the immortalizing gene," said Dr. Shay.

Telomerase doesn’t cause cancer, but it allows the cancer cells to keep dividing. It’s almost a universal target for fighting cancer, Dr. Shay said, and its specificity is what makes it attractive for attack. Telomerase works by binding to DNA and, with a protein section, keeping the chromosome from getting shorter. GRN163L apparently prevents telomerase from binding.

The researchers injected human lung tumor cells into the tails of mice and found that GRN163L blocked the development of metastatic tumors over several months. The higher the dose, the fewer tumors there were.

"That suggests that this drug prevented the lung metastasis," Dr. Shay said, noting that the reactions took place at doses that would be considered reasonable for treatment. The compound might not be effective, however, in someone in whom metastasis has already begun, he said.

The research was partly responsible for getting the drug into clinical trials, where it will soon be tested on humans, Dr. Shay said. The trials, recently approved by the Food and Drug Administration, are at an early stage, in which the drug is simply being tested for safety.

"We will be surprised if we see any toxicity," he said.

Future experiments on animals will involve combining GRN163L with other drugs and with radiation and therapy to see how it interacts with these other cancer treatments.

"What we’re really interested in is getting this novel therapeutic to work, to minimize the suffering and pain that people have with cancer therapy," Dr. Shay said.

Other UT Southwestern researchers involved in the study were Drs. Gunnur Dikmen and Ginelle Gellert, former postdoctoral researchers in cell biology, Dr. Shalmica Jackson, postdoctoral researcher in cell biology, and Dr. Woodring Wright, professor of cell biology. Researchers from the Geron Corp. also participated.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Scientists enlist engineered protein to battle the MERS virus
22.05.2017 | University of Toronto

nachricht Insight into enzyme's 3-D structure could cut biofuel costs
19.05.2017 | DOE/Los Alamos National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>