Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find drug that blocks spread of lung cancer in mice

01.09.2005


Researchers at UT Southwestern Medical Center have found a compound that shows promise as a way to block the spread, or metastasis, of lung cancer.



The researchers found that the compound blocks an enzyme that is known to keep cells immortal and that is implicated in almost all human cancers. From results in mice, they determined that the compound, called GRN163L, also works rapidly and in doses that would be reasonable for therapy. It may be particularly useful after surgery or in combination with chemotherapy or radiotherapy to prevent residual cancer cells from spreading.

"We showed for the first time that this drug can work in animals," said Dr. Jerry Shay, professor of cell biology at UT Southwestern and senior author of the study, which appears in the September issue of the journal Cancer Research.


Lung cancer is the leading cause of cancer death, killing more people than breast cancer, prostate cancer and colon cancer combined, according to the American Cancer Society.

Lung adenocarcinoma accounts for about 40 percent of lung cancers. Its rate is increasing worldwide, Dr. Shay said, and survival rates are poor because the disease metastasizes, usually by the time treatment begins in most cases.

The researchers designed, synthesized and tested GRN163L, which consists of 13 nucleotides, the units that make up DNA, plus a fatty section that improves the rate at which cells take it in.

GRN163L specifically matches a stretch of DNA at the end of the chromosome, a segment called the telomere. Normally, as cells divide and age, telomeres become shorter and shorter. When they reach a certain length, the cells stop dividing.

But the telomeres in cancerous cells stay the same length, thanks to an enzyme called telomerase. The gene that creates telomerase is active in about 85 percent to 90 percent of tumors and in only a few noncancerous cells.

"Telomerase is the immortalizing gene," said Dr. Shay.

Telomerase doesn’t cause cancer, but it allows the cancer cells to keep dividing. It’s almost a universal target for fighting cancer, Dr. Shay said, and its specificity is what makes it attractive for attack. Telomerase works by binding to DNA and, with a protein section, keeping the chromosome from getting shorter. GRN163L apparently prevents telomerase from binding.

The researchers injected human lung tumor cells into the tails of mice and found that GRN163L blocked the development of metastatic tumors over several months. The higher the dose, the fewer tumors there were.

"That suggests that this drug prevented the lung metastasis," Dr. Shay said, noting that the reactions took place at doses that would be considered reasonable for treatment. The compound might not be effective, however, in someone in whom metastasis has already begun, he said.

The research was partly responsible for getting the drug into clinical trials, where it will soon be tested on humans, Dr. Shay said. The trials, recently approved by the Food and Drug Administration, are at an early stage, in which the drug is simply being tested for safety.

"We will be surprised if we see any toxicity," he said.

Future experiments on animals will involve combining GRN163L with other drugs and with radiation and therapy to see how it interacts with these other cancer treatments.

"What we’re really interested in is getting this novel therapeutic to work, to minimize the suffering and pain that people have with cancer therapy," Dr. Shay said.

Other UT Southwestern researchers involved in the study were Drs. Gunnur Dikmen and Ginelle Gellert, former postdoctoral researchers in cell biology, Dr. Shalmica Jackson, postdoctoral researcher in cell biology, and Dr. Woodring Wright, professor of cell biology. Researchers from the Geron Corp. also participated.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Fingerprint' technique spots frog populations at risk from pollution
27.03.2017 | Lancaster University

nachricht Parallel computation provides deeper insight into brain function
27.03.2017 | Okinawa Institute of Science and Technology (OIST) Graduate University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>