Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Researchers find drug that blocks spread of lung cancer in mice

01.09.2005


Researchers at UT Southwestern Medical Center have found a compound that shows promise as a way to block the spread, or metastasis, of lung cancer.



The researchers found that the compound blocks an enzyme that is known to keep cells immortal and that is implicated in almost all human cancers. From results in mice, they determined that the compound, called GRN163L, also works rapidly and in doses that would be reasonable for therapy. It may be particularly useful after surgery or in combination with chemotherapy or radiotherapy to prevent residual cancer cells from spreading.

"We showed for the first time that this drug can work in animals," said Dr. Jerry Shay, professor of cell biology at UT Southwestern and senior author of the study, which appears in the September issue of the journal Cancer Research.


Lung cancer is the leading cause of cancer death, killing more people than breast cancer, prostate cancer and colon cancer combined, according to the American Cancer Society.

Lung adenocarcinoma accounts for about 40 percent of lung cancers. Its rate is increasing worldwide, Dr. Shay said, and survival rates are poor because the disease metastasizes, usually by the time treatment begins in most cases.

The researchers designed, synthesized and tested GRN163L, which consists of 13 nucleotides, the units that make up DNA, plus a fatty section that improves the rate at which cells take it in.

GRN163L specifically matches a stretch of DNA at the end of the chromosome, a segment called the telomere. Normally, as cells divide and age, telomeres become shorter and shorter. When they reach a certain length, the cells stop dividing.

But the telomeres in cancerous cells stay the same length, thanks to an enzyme called telomerase. The gene that creates telomerase is active in about 85 percent to 90 percent of tumors and in only a few noncancerous cells.

"Telomerase is the immortalizing gene," said Dr. Shay.

Telomerase doesn’t cause cancer, but it allows the cancer cells to keep dividing. It’s almost a universal target for fighting cancer, Dr. Shay said, and its specificity is what makes it attractive for attack. Telomerase works by binding to DNA and, with a protein section, keeping the chromosome from getting shorter. GRN163L apparently prevents telomerase from binding.

The researchers injected human lung tumor cells into the tails of mice and found that GRN163L blocked the development of metastatic tumors over several months. The higher the dose, the fewer tumors there were.

"That suggests that this drug prevented the lung metastasis," Dr. Shay said, noting that the reactions took place at doses that would be considered reasonable for treatment. The compound might not be effective, however, in someone in whom metastasis has already begun, he said.

The research was partly responsible for getting the drug into clinical trials, where it will soon be tested on humans, Dr. Shay said. The trials, recently approved by the Food and Drug Administration, are at an early stage, in which the drug is simply being tested for safety.

"We will be surprised if we see any toxicity," he said.

Future experiments on animals will involve combining GRN163L with other drugs and with radiation and therapy to see how it interacts with these other cancer treatments.

"What we’re really interested in is getting this novel therapeutic to work, to minimize the suffering and pain that people have with cancer therapy," Dr. Shay said.

Other UT Southwestern researchers involved in the study were Drs. Gunnur Dikmen and Ginelle Gellert, former postdoctoral researchers in cell biology, Dr. Shalmica Jackson, postdoctoral researcher in cell biology, and Dr. Woodring Wright, professor of cell biology. Researchers from the Geron Corp. also participated.

Aline McKenzie | EurekAlert!
Further information:
http://www.utsouthwestern.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Solar Collectors from Ultra-High Performance Concrete Combine Energy Efficiency and Aesthetics

16.01.2017 | Trade Fair News

3D scans for the automotive industry

16.01.2017 | Automotive Engineering

Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs

16.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>